
Eigentaste 5.0: Constant-Time Adaptability in a
Recommender System Using Item Clustering

Tavi Nathanson
Automation Sciences Lab

EECS Department
University of California,

Berkeley
dnathanson@berkeley.edu

Ephrat Bitton
Automation Sciences Lab

IEOR Department
University of California,

Berkeley
ebitton@berkeley.edu

Ken Goldberg
Automation Sciences Lab

IEOR and EECS Departments
University of California,

Berkeley
goldberg@berkeley.edu

ABSTRACT
Recommender systems strive to recommend items that users
will appreciate and rate highly, often presenting items in
order of highest predicted ratings first. In this working pa-
per we present Eigentaste 5.0, a constant-time recommender
system that dynamically adapts the order that items are rec-
ommended by integrating user clustering with item cluster-
ing and monitoring item portfolio effects. This extends our
Eigentaste 2.0 algorithm, which uses principal component
analysis to cluster users offline. In preliminary experiments
we backtested Eigentaste 5.0 on data collected from Jester,
our online joke recommender system. Results suggest that it
will perform better than Eigentaste 2.0. The new algorithm
also uses item clusters to address the cold-start problem for
introducing new items.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ; H.3.3 [Inform-
ation Storage and Retrieval]: Information Search and
Retrieval—Clustering

General Terms
Algorithms, Experimentation, Human Factors, Performance

Keywords
Collaborative filtering, recommender systems, adaptability

1. INTRODUCTION
The purpose of a recommender system is to eliminate the

need for browsing the entire item space by presenting the
user with items of interest early on. As such, our objective
in developing an effective recommender system is to sustain
higher ratings over earlier recommendations.

Eigentaste 2.0 [4] is a constant-time collaborative filtering
algorithm that collects real-valued ratings of a gauge set of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010 ...$5.00.

items for all new users. Offline, it applies principal compo-
nent analysis (PCA) to the ratings matrix to compute user
clusters. Online, determining the appropriate cluster for a
new user requires a single dot product with the stored eigen-
vector which is computed in constant time for fast response.
Items are then recommended based on average ratings of
other users in that cluster.

Although Eigentaste 2.0 provides a fast cold-start mech-
anism for new users, each user is permanently assigned to
a user cluster and thus a fixed item presentation order that
is determined by predicted ratings for that cluster. A dis-
advantage is that the system does not respond to the user’s
subsequent ratings. Another disadvantage is the potential
for presenting similar items sequentially, referred to as the
portfolio effect [21, 7]. For example, in Jester, our joke rec-
ommender system, a user who rates a Chuck Norris joke
highly might then be recommended several more Chuck Nor-
ris jokes. In humor, as in many other contexts like movies
or books, the marginal utility of very similar items decreases
rapidly.

To address these problems we propose Eigentaste 5.0, an
adaptive algorithm that, in constant online time, dynami-
cally reorders its recommendations for a user based on the
user’s most recent ratings. We observe that the problem of
finding item clusters based on users’ ratings is the dual to
the problem of finding user clusters based on item ratings.
We develop a hybrid approach that allows us to take advan-
tage of the computational efficiencies provided by solutions
to both problems: PCA facilitates fast placement of new
users in appropriate user clusters, and maintaining clusters
or portfolios of similar items allows us to monitor portfolio
effects.

Item clustering can also be used to address the cold-start
problem for integrating new items into the system. A new
item can be quickly matched with similar items, and the
ratings of those items can be used to predict ratings for the
new item.

2. RELATED WORK
Thornton maintains an excellent online survey of the lit-

erature on collaborative filtering: [16].
Quan et al. [12] propose a collaborative filtering algo-

rithm that adds item clusters to a user-based approach:
when predicting an item’s rating for a user, it looks at sim-
ilar users with respect to ratings within that item’s cluster.
George and Merugu [3] use Bregman co-clustering of users
and items in order to produce a scalable algorithm. Vozalis

and Margaritis [17] compare other algorithms that combine
user-based and item-based collaborative filtering.

Eigentaste 2.0 deals with rating sparseness by ensuring
that all users rate the common set of items, but there are
many alternative solutions to this problem. Wilson et al.
[19] approach sparseness by using data mining techniques to
reveal implicit knowledge about item similarities. Xue et al.
[20], on the other hand, fill in missing values by using user
clusters as smoothing mechanisms. Wang et al. [18] fuse the
ratings of a specific item by many users, the ratings of many
items by a certain user, and data from similar users (to that
user) rating similar items (to that item) in order to predict
the rating of that item by the given user. This approach
both deals with sparsity and combines user-based and item-
based collaborative filtering. Herlocker et al. [5] evaluate
several different approaches to dealing with sparseness.

Eigentaste 2.0 scales well because in constant online time,
it matches new users with user clusters that are generated
offline. Linden et al. [9] at Amazon.com use an item-based
collaborative filtering algorithm that scales independent of
the number of users and the number of items. Rashid et
al. [14] propose an algorithm, ClustKnn, that combines
clustering (model-based) with a nearest neighbor approach
(memory-based) to provide scalability as well as accuracy.
Earlier, Pennock et al. [11] evaluated the method of per-
sonality diagnosis, another technique that combines model-
based and memory-based approaches by aiming to determine
a user’s personality type. Deshpande and Karypis [2] eval-
uate item-based collaborative filtering algorithms and show
that they are up to two orders of magnitude faster than
user-based algorithms.

As described above, Eigentaste 2.0 is well-suited to the
cold-start situation for new users. Park et al. [10] use fil-
terbots, bots that algorithmically rate items based on item
or user attributes, to handle cold-start situations. Schein et
al. [15] discuss methods for dealing with the cold-start prob-
lem for new items by using existing item attributes, which
is symmetric to the cold-start problem for new users when
user attributes are available. Rashid et al. [13] survey six
techniques for dealing with this situation. Cosley et al. [1]
investigate the rating scales used with recommender inter-
faces.

Other improvements to Eigentaste 2.0 include Kim and
Yum’s [6] iterative PCA approach that eliminates the need
for a common set of items. Lemire’s [8] scale and translation
invariant version of the Eigentaste 2.0 algorithm improves
NMAE performance by 17%.

Ziegler et al. [21] propose a new metric for quantifying the
diversity of items in a recommendation list, which is used
to address the portfolio effect. Konstan et al. [7] extend
this work to apply recommender systems to information-
seeking tasks. While these works improve user satisfaction
by increasing topic diversity in recommendation lists, we do
so by dynamically reordering recommendations in response
to new ratings.

3. EIGENTASTE 5.0
In this section we describe Eigentaste 5.0, an extension of

Eigentaste 2.0. Although there are no versions 3.0 or 4.0,
we adopted this version numbering to maintain consistency
with our recommender system; that is, the next version of
Jester (5.0) will incorporate Eigentaste 5.0.

3.1 Notation
U the set of all users
I the set of all items

ru,i user u’s rating of item i
ri the mean rating of item i
ru user u’s mean item rating
~au moving average of u’s ratings per item cluster

3.2 Dynamic Recommendations
We seek to enhance the Eigentaste 2.0 algorithm so that it

considers changes in a user’s preferences when selecting the
next item to recommend. In order to maintain the constant
online running time of the algorithm, we exploit the dual na-
ture between users and items in a recommendation system.
By partitioning the item set into groups of similar items, we
can make recommendations based on user preferences for
certain classes of items, instead of moving users to different
user clusters as their preferences change. While clustering
users into groups with similar taste and aggregating their
ratings is helpful in predicting how a new user would rate
the items, we can tailor recommendations in real-time as we
learn more about the user’s preferences.

We use the k-means algorithm to cluster the item space
offline and across all user ratings. The Pearson correlation
function is used as a distance metric between items, where
the correlation between item i and item j is defined as fol-
lows:

P (i, j) =

P
u∈U (ru,i − ri)(ru,j − rj)qP

u∈U (ru,i − ri)2
qP

u∈U (ru,j − rj)2

Pearson correlation provides a real-valued measure on the
scale of [−1, +1], where greater values correspond to higher
correlation. To use this as a distance metric, we compute
1 minus the Pearson correlation, where larger values reflect
greater distances. Note that it is standard procedure to only
consider users who have rated both items when computing
Pearson correlation, but this is problematic for k-means clus-
tering when dealing with sparse data, as we discuss in section
5.

For each user u ∈ U we maintain a vector ~au of a moving
average of u’s ratings of the items in each item cluster; that
is, ~au[c] corresponds to user u’s average rating of the last
n items in item cluster c, where n is some constant. We
initialize a new user’s moving average slots with his ratings
of items from the common set. For new users who do not
have n ratings for each item cluster, we seed the remaining
slots of their moving average with the average ratings for
the corresponding item cluster across users from the same
user cluster.

In Eigentaste 2.0, a user is always recommended items
in decreasing order of their predicted ratings, where predic-
tions are determined by the average rating for that item by
users in the same user cluster. In essence, a user’s ratings of
additional items have no influence on which item is recom-
mended next.

We give a constant online time solution as follows: user
u is recommended the top-predicted item (not yet rated by
u) from the item cluster corresponding to the highest value
in ~au. As u tires of the items from that cluster, the moving
average of his ratings for the cluster will begin to decrease
and eventually fall below that of another item cluster.

For clarity, we provide a numerical example that walks

Figure 1: Average difference (across 7,000 users)
between actual ratings for Eigentaste 5.0 and 2.0
for the ith recommended item.

through the process of recommending the next item to some
user u. Suppose u maintains the following table, ~au, of her
last 5 ratings of items in each item cluster.

Item Cluster User u’s last 5 ratings Average
1 4.2, 5.3, 3.8, 2.1, 2.7 3.62
2 7.2, 6.5, 5.9, 0.8, -1.2 3.84
3 1.9, -2.4, 3.8, 2.1, 0.5 1.18

At present, user u’s moving average of items in cluster 2 is
the highest, and so Eigentaste 5.0 presents u with the item
from cluster 2 that has the highest predicted rating and has
not yet been evaluated by u. Suppose u rates this item with
-2.3. Her new moving average of item ratings for cluster 2
becomes 1.94, which is lower than the moving average for
item cluster 1. Subsequently, in the next iteration, user u
will be recommended the item from cluster 1 that has the
highest predicted rating, and the process is repeated.

3.3 Cold Starting New Items
Difficulty in introducing new items to the system stems

from the fact that they have so few ratings overall, and even
fewer ratings within individual user clusters. Hence, the
predictions generated by Eigentaste 2.0 are subject to more
variability due to the small sample sizes.

Eigentaste 5.0 uses sparse ratings for a new item i to find
the closest item cluster based on the Pearson distance met-
ric described in section 3.2. User u’s predicted rating of i
is determined by the average rating of all items within i’s
nearest item cluster across users in u’s user cluster. We
use confidence intervals to determine the appropriate time
to switch from this estimate to the estimate based only on
actual ratings of item i.

4. PRELIMINARY RESULTS
It is impossible to truly compare how a user would react

to different item recommendation orders, as the first test
would greatly bias the second. In the near future, we will
release Eigentaste 5.0 for data collection and evaluate the
algorithms by randomly assigning new users to either Eigen-
taste 2.0 or 5.0; in the meantime, we compare the algorithm
with its predecessor by backtesting on data collected from
Jester.

Figure 2: Average differences (across 7,000 users)
between actual and predicted ratings for Eigentaste
5.0 and 2.0 for the ith recommended item.

In this section we discuss recent improvements to Jester
and report our initial findings on the performance of Eigen-
taste 5.0.

4.1 Jester: An Online Joke Recommender
Jester (http://eigentaste.berkeley.edu) uses jokes as

an item class to demonstrate and evaluate Eigentaste 2.0.
Jokes are an example of an item class that can be rated
quickly and without prior knowledge. Between March 1999
and May 2003, 73,421 users registered and rated a set of
100 jokes using the Jester system, producing a total of 4.1
million continuous ratings in the range [-10.00, +10.00].

In November 2006 we released Jester 4.0, which intro-
duced a number of improvements, including 50 new jokes,
a redesigned user interface, and a visible slider that hovers
above the continuous rating meter. To deal with the cold-
start problem for new jokes, Jester 4.0 collects ratings for
the 5 most sparsely rated jokes at the time of a new user’s
registration. It continues to interleave sparsely rated jokes
during the recommendation phase. Jester 4.0 has collected
approximately 110,000 joke ratings of 150 jokes from 3,000
users (as of August 10, 2007). Both data sets, including
anonymous ratings, are available upon request.

The features of Eigentaste 5.0 (dynamic recommendations
and bootstrapping new items) will be implemented in Jester
5.0.

4.2 Backtesting Results
We simulated Eigentaste 2.0 and the dynamic recommen-

dations of Eigentaste 5.0 with the Jester data collected be-
tween 1999 and 2003. The users are randomly partitioned
into equal sized sets of“existing”and“new”users, and“exist-
ing” users are clustered using principal component analysis.
The item space is clustered using a k-value of 15, and we
use a 5 item moving average for each item cluster to track
user preferences. We iteratively introduce the “new” users
into the system and determine the order that the respective
algorithms would recommend items. The two sequences of
ratings (and corresponding predictions) for each user are
recorded in this order. We average the ratings for the ith

recommended item across all“new”users for both actual and
predicted rating sequences.

Figure 1 shows the difference between the average actual
ratings for Eigentaste 5.0 and 2.0. In accordance with our
objective, we find that Eigentaste 5.0 provides a distinct
advantage over Eigentaste 2.0 for earlier recommendations,
particularly within the range of the first 50 items.

The differences between the average actual ratings and
the average predicted ratings for each algorithm are shown
in Figure 2, which illustrates that the error in predictions is
significantly greater for Eigentaste 5.0 than for Eigentaste
2.0. This is because the user clusters used to generate pre-
dictions only consider ratings for the common set of items,
while with Eigentaste 5.0, we can recommend items better
suited to a user’s interests by using item clusters to take into
account the latest user-specific information.

5. FUTURE WORK
In this working paper we presented Eigentaste 5.0, a new

constant-time algorithm to dynamically tailor recommenda-
tion sequences to user preferences by integrating user clus-
tering with item clustering and monitoring item portfolio
effects. We presented results from preliminary backtesting
experiments, which we expect will be a lower bound on ac-
tual performance that we will evaluate with Jester 5.0.

We are seeking a more robust method for determining
similarity between items when data is very sparse. Substi-
tuting average ratings for null data dilutes the actual ratings
obtained for the item, and the clustering algorithm is more
likely to place the sparse items in the same item cluster. For
our experiments, we only considered users that had rated all
of the items in the set in order to avoid the sparsity issue.

We will also experiment with generalizations of the adap-
tive aspect of Eigentaste 5.0, where we recommend items
by cycling through the top n item clusters for a user as op-
posed to just one. Doing so would introduce more diversity
among recommendations and may further reduce portfolio
effects. We will also experiment with giving users the ability
to modify how much item similarity they desire.

6. REFERENCES
[1] D. Cosley, S. Lam, I. Albert, J. Konstan, and J. Riedl.

Is seeing believing?: how recommender system
interfaces affect users’ opinions. Proc. of the Annual
SIGCHI Conf., pages 585–592, 2003.

[2] M. Deshpande and G. Karypis. Item-based top-N
recommendation algorithms. ACM TOIS,
22(1):143–177, 2004.

[3] T. George and S. Merugu. A scalable collaborative
filtering framework based on co-clustering. Proc. of the
5th IEEE Int’l Conf. on Data Mining, pages 625–628,
2005.

[4] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.
Eigentaste: a constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[5] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl.
Evaluating collaborative filtering recommender
systems. ACM TOIS, 22(1):5–53, 2004.

[6] D. Kim and B. Yum. Collaborative filtering based on
iterative principal component analysis. Expert Systems
with Applications, 28(4):823–830, 2005.

[7] J. Konstan, S. McNee, C. Ziegler, R. Torres,
N. Kapoor, and J. Riedl. Lessons on Applying
Automated Recommender Systems to

Information-Seeking Tasks. Proceedings of the
Twenty-First National Conference on Artificial
Intelligence, 2006.

[8] D. Lemire. Scale and translation invariant
collaborative filtering systems. Information Retrieval,
8(1):129–150, 2005.

[9] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: item-to-item collaborative filtering.
IEEE Internet Computing, 7(1):76–80, 2003.

[10] S. Park, D. Pennock, O. Madani, N. Good, and
D. DeCoste. Näıve filterbots for robust cold-start
recommendations. Proc. of the 12th ACM SIGKDD
Int’l Conf., pages 699–705, 2006.

[11] D. Pennock, E. Horvitz, S. Lawrence, and C. Giles.
Collaborative filtering by personality diagnosis: a
hybrid memory and model-based approach. Proc. of
the 16th Conf. on Uncertainty in Artificial
Intelligence, pages 473–480, 2000.

[12] T. Quan, I. Fuyuki, and H. Shinichi. Improving
accuracy of recommender system by clustering items
based on stability of user similarity. IAWTIC’2006
Proc., pages 61–61, 2006.

[13] A. Rashid, I. Albert, D. Cosley, S. Lam, S. McNee,
J. Konstan, and J. Riedl. Getting to know you:
learning new user preferences in recommender
systems. Proc. of the 7th Int’l Conf. on Intelligent
User Interfaces, pages 127–134, 2002.

[14] A. Rashid, S. Lam, G. Karypis, and J. Riedl.
ClustKNN: a highly scalable hybrid model-&
memory-based CF algorithm. Proc. of WebKDD 2006,
2006.

[15] A. Schein, A. Popescul, L. Ungar, and D. Pennock.
Methods and metrics for cold-start recommendations.
Proc. of the 25th Annual Int’l ACM SIGIR Conf.,
pages 253–260, 2002.

[16] J. Thornton. Collaborative filtering research papers.

[17] M. Vozalis and K. Margaritis. On the combination of
user-based and item-based collaborative filtering.
International Journal of Computer Mathematics,
81(9):1077–1096, 2004.

[18] J. Wang, A. de Vries, and M. Reinders. Unifying
user-based and item-based collaborative filtering
approaches by similarity fusion. Proc. of the 29th
Annual Int’l ACM SIGIR Conf., pages 501–508, 2006.

[19] D. Wilson, B. Smyth, and D. Sullivan. Sparsity
reduction in collaborative recommendation: a
case-based approach. Int’l Journal of Pattern
Recognition and Artificial Intelligence, 17(5):863–884,
2003.

[20] G. Xue, C. Lin, Q. Yang, W. Xi, H. Zeng, Y. Yu, and
Z. Chen. Scalable collaborative filtering using
cluster-based smoothing. Proc. of the 28th Annual
Int’l ACM SIGIR Conf., pages 114–121, 2005.

[21] C. Ziegler, S. McNee, J. Konstan, and G. Lausen.
Improving recommendation lists through topic
diversification. Proceedings of the 14th international
conference on World Wide Web, pages 22–32, 2005.

