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Abstract. On-policy imitation learning algorithms such as Dagger
evolve a robot control policy by executing it, measuring performance
(loss), obtaining corrective feedback from a supervisor, and generating
the next policy. As the loss between iterations can vary unpredictably, a
fundamental question is under what conditions this process will eventu-
ally achieve a converged policy. If one assumes the underlying trajectory
distribution is static (stationary), it is possible to prove convergence for
Dagger. Cheng and Boots (2018) consider the more realistic model for
robotics where the underlying trajectory distribution, which is a function
of the policy, is dynamic and show that it is possible to prove conver-
gence when a condition on the rate of change of the trajectory distri-
butions is satisfied. In this paper, we reframe that result using dynamic
regret theory from the field of Online Optimization to prove convergence
to locally optimal policies for Dagger, Imitation Gradient, and Multi-
ple Imitation Gradient. These results inspire a new algorithm, Adaptive
On-Policy Regularization (AOR), that ensures the conditions for conver-
gence. We present simulation results with cart-pole balancing and walker
locomotion benchmarks that suggest AOR can significantly decrease dy-
namic regret and chattering. To our knowledge, this the first application
of dynamic regret theory to imitation learning.

Keywords: Machine Learning, Optimization, Imitation Learning

1 Introduction

In imitation learning, the robot observes states and control labels from a super-
visor and estimates a mapping from states to controls. A fundamental problem
in imitation learning is covariate shift [1], where the distribution of trajectories
experienced by the robot at run time differs from the distributions experienced
during training time. For example, consider an autonomous vehicle trained to
drive on a road from demonstrations of humans driving safely on the center of
the same road. If the vehicle makes slight errors when it is deployed, it may drift
towards the sides of the road where it had not previously experienced data from
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2 Lee et al.

human supervisors, resulting in poor performance leading to drift from which it
cannot recover.

On-policy Imitation learning algorithms such as Dagger [13], Aggrevated
[14], and Loki [4] have been proposed to mitigate this issue. As opposed to learn-
ing only from supervisor demonstrations, these algorithms roll out the robot’s
current policy at each iteration, allowing it to make errors and observe new
states. The supervisor then provides corrective control labels for these new states
retroactively. For this reason, these algorithms are often referred to as on-policy
imitation learning algorithms because the robot iteratively learns from its cur-
rent policy [11]. This is in contrast to off-policy algorithms which learn from the
supervisor’s demonstrations. Recently, there has been interest in determining
when on-policy algorithms are guaranteed to converge to good policies because
practitioners often settle on the policy from the final iteration of the algorithm.
Cheng and Boots [2] proved that Dagger converges under the condition that a
sensitivity parameter related to the rate of change of the trajectory distributions
is small.

On-policy algorithms can be viewed as variants of algorithms from the field of
Online Optimization [6]. Online Optimization is often used for problems such as
portfolio management and network routing analysis where environments change
over time [8]. At iteration n an agent plays some parameter θn and then some
loss function fn is presented. The agent then incurs loss fn(θn). In on-policy
imitation learning, θn would correspond to policy parameters. fn would be a
supervised learning loss function obtained from rolling out θn and observing
corrective labels from the supervisor. At each iteration the supervised learning
loss function is different because the distribution of trajectories induced by the
robot changes as the policy is updated. The goal is to continually try to find
the optimal θn at each iteration based on the sequence of past loss functions.
A common choice in Online Optimization to measure the performance of an
algorithm is static regret over N iterations, defined as

RS(θ1, . . . , θN ) :=

N∑
n=1

fn(θn)−min
θ

N∑
n=1

fn(θ). (1)

In imitation learning, this would mean the robot is compared against the best
it could have done on the average of its trajectory distributions.

In this paper, we focus on determining when on-policy algorithms can and
cannot converge and specifically when the policy is performing optimally on its
own distribution. We draw a connection between this very natural objective and
an alternative metric in Online Optimization known as dynamic regret [5,10,15].
As opposed to the well known static regret in (1), dynamic regret measures
performance of a policy at each instantaneous iteration:

RD(θ1, . . . , θN ) :=

N∑
n=1

fn(θn)−
N∑
n=1

min
θ
fn(θ). (2)

The difference between static and dynamic regret is that, for dynamic regret,
the minimum goes inside the summation, meaning that the regret is an instanta-
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neous difference at each iteration. Proving that static regret is low implies that
the policy on average is at least as good as a single fixed policy that does well
on the average of the distributions seen during training. Proving that dynamic
regret is low implies that the average policy is as good as possible on its own
distribution. That is, the policy is locally optimal. Achieving low dynamic re-
gret is inherently harder than achieving low static regret because RS ≤ RD, but
dynamic regret is more relevant as a theoretical metric in robotics where the
trajectory distributions are changing.

In Online Optimization, it is well known that it is not possible to achieve
low dynamic regret in general due to the possibility of adversarial loss functions
[10]. However, in imitation learning, the key insight is that the loss functions at
each iteration represent the trajectory distributions as a function of the policy
parameters [2]. Therefore, we can leverage information known about how the
trajectory distribution changes in response to changing policy parameters to
obtain specific dynamic regret rates.

This paper makes four contributions:

1. Introduces a dynamic regret analysis to evaluate the convergence of on-policy
imitation learning algorithms.

2. Presents average dynamic regret rates and conditions for convergence for
Dagger, Imitation Gradient, and Multiple Imitation Gradient.

3. Introduces Adaptive On-Policy Regularization (AOR), a novel algorithm
that adaptively regularizes on-policy algorithms to improve dynamic regret
and cause convergence.

4. Presents empirical evidence of non-convergent on-policy algorithms and shows
that AOR can ensure convergence in a cart-pole balancing task and a walker
locomotion task.

2 Preliminaries

In this section we introduce the notation, problem statement, and assumptions
for imitation learning by supervised learning. Let st ∈ S and ut ∈ U be the
state and control in a Markov decision process. The probability of a trajectory
τ of length T under policy π ∈ Π : S 7→ U is given by

p(τ ;π) = p(s0)

T−1∏
t=1

pπ(ut|st)p(st+1|st, ut).

In this paper, we consider parametric policies, i.e., there is a convex, bounded
inner product space of parameters Θ with diameter D := maxθ1,θ2∈Θ ‖θ1 − θ2‖
and our goal is to find a parameterized policy πθ that minimizes some loss with
respect to the supervisor policy π∗, which may not necessarily be attainable by
Θ. The loss of a policy π along a trajectory τ is a non-negative function J such
that

J(τ, π) =

T−1∑
t=1

`(π(st), π
∗(st)),
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where ` : U × U 7→ R≥0 is a per-time step loss.
The general optimization problem of imitation learning can be written as

min
θ∈Θ

Ep(τ ;πθ)J(τ, πθ).

The expectation is taken over the distribution of trajectories that πθ induces
and then πθ is evaluated on the trajectories sampled from that distribution.
This problem reflects the goal of having the policy do well on its own induced
distribution. However, this is challenging and cannot be solved with regular opti-
mization methods since the distribution of trajectories is unknown. It also cannot
be solved with regular supervised learning by sampling supervisor trajectories
because the sampling distribution is a function of the policy [1].

Because this problem cannot be solved directly, existing algorithms relax it
by fixing the trajectory distribution and then optimizing over the evaluation
parameter. This decouples the sampling from the supervised learning problem.
For example, in behavior cloning, one sets the trajectory distribution to the
supervisor’s trajectory distribution and finds the policy that minimizes loss on
that distribution. Formally, we consider the average loss of a parameter θ ∈
Θ over the distribution of trajectories generated by a possibly different policy
parameter θ′ ∈ Θ:

fθ′(θ) := Ep(τ ;πθ′ )
J(τ, πθ). (3)

Here, θ′ controls the trajectory distribution and θ controls the predictions used
to the compute the loss on that distribution. For this reason, we refer to the θ′

as the distribution-generating parameter and θ as the evaluation parameter. To
better convey this notion of the policy parameters being decoupled, we use this
concise f notation as in [2].

Optimization problems in this paper will be of the form minθ∈Θ fθ′(θ) for
some fixed and known θ′ ∈ Θ. Because the trajectory distribution no longer
depends on the variable θ, the supervised learning problem can now be feasibly
solved by sampling from p(τ ;πθ′) which corresponds to rolling out trajectories
under the fixed policy πθ′ . Specifically in this paper, we will consider iterative
on-policy algorithms over N ∈ N iterations. At any iteration n for 1 ≤ n ≤ N ,
the policy parameter θn is rolled out as the distribution-generating parameter
and the loss fθn(θ) = Ep(τ ;πθn )J(τ, πθ) is observed, where θ is the free variable
and θn is the fixed per-iteration distribution-generating parameter. As in prior
work [2,13], for convenience, we write fn(θ) := fθn(θ). These loss functions form
the sequence of losses used in the regret metrics (1) and (2).

Next, we briefly describe the main assumptions of this paper. The assump-
tions are stated formally in Section 6. As in prior work in both imitation learning
and Online Optimization, we assume strong convexity and smoothness of the
loss function in the evaluation parameter. Strong convexity ensures the loss is
curved at least quadratically while smoothness guarantees it is not too curved.
As in [2], we also assume a regularity assumption on the fn sequence, which
bounds the sensitivity of the trajectory distribution in response to changes in
the distribution-generating parameter.
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3 Related Work

The challenge of covariate shift in imitation learning by supervised learning
is the subject of significant research robotics. It is especially prevalent when
the robot’s policy cannot fully represent the supervisor [9]. In robotics, many
algorithms have been proposed to mitigate covariate shift for imitation learning.
Ross et al. [13] introduced Dagger, an on-policy algorithm that allows the robot
to make mistakes and then observe corrective labels from the supervisor in new
states that might not be seen from ideal supervisor demonstrations alone.

Gradient-based on-policy methods for imitation learning have gained inter-
est due to their similarity to policy gradient algorithms and their computational
efficiency. These are also known as Imitation Gradient methods. Aggrevated
[14] was proposed for fast policy updates designed for deep neural network poli-
cies. Loki [4] uses a mirror descent algorithm on an imitation learning loss to
bootstrap reinforcement learning.

Ross et al. [13] first introduced a static regret-style analysis for Dagger,
showing that with strongly convex losses, running Dagger results in low static
regret in all cases. This means that a Dagger policy is on average at least as
good as one policy that does well on the average of trajectory distributions seen
during training. However, the performance on the average of trajectory distribu-
tions is not always informative, as shown by Laskey et al. [9], because the average
may contain irrelevant distributions as a result of rolling out suboptimal policies.
Cheng and Boots [2] also recently expanded the Dagger analysis showing that
despite guaranteed convergence in static regret, the algorithm may not always
converge to a low loss policy. Furthermore, they identified conditions sufficient
for convergence to local optima. This work extends the results of Cheng and
Boots [2] by drawing a connection with dynamic regret theory to identify condi-
tions for convergence for Dagger and other on-policy algorithms and as a basis
for a new algorithm. To the best of our knowledge, this is the first application
of dynamic regret theory to imitation learning.

4 On-Policy Algorithms

We now review three on-policy algorithms that will be the focus of the main
theoretical and empirical results of the paper.

4.1 DAGGER

Dagger is a variant of the follow-the-leader algorithm from Online Optimiza-
tion. For detailed discussion of implementation, we refer the reader to [6,13].
Dagger proceeds by rolling out the current policy and observing a loss based
on the induced trajectory distribution. The next policy parameter is computed
by aggregating all observed losses and minimizing over them. An example of this
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Algorithm 1: Dagger [13]

Input: Initial policy parameter θ1,
Max iterations N .

for n = 1 to N − 1 do
Roll out θn and collect τn.
Form loss fn(θ) = fθn(θ) from
supervisor feedback on τn.
θn+1 ← arg minθ∈Θ

∑n
m=1 fm(θ).

end for

Algorithm 2: (Multiple) Imitation
Gradient [4,14,16]

Input: Initial policy parameter θ1,
Max iterations N ,
Updates per iteration K,
Stepsize η.

for n = 1 to N − 1 do
Roll out θn and collect τn.
Form loss fn(θ) = fθn(θ) from τn.
θ1n ← θn
for k = 1 to K do
θk+1
n ← PΘ

(
θkn − η∇fn(θkn)

)
.

end for
θn+1 ← θK+1

n .
end for

Left: Dagger minimizes over all observed loss functions which are represented by a supervised learn-
ing loss over all observed data. Right: Multiple Imitation Gradient computes a gradient on only the
most recent data collected and applies K gradient steps. Imitation Gradient is a special case where
K = 1. PΘ is a projection operation, projecting the resulting parameter vector back onto Θ in the
event it lies outside.

for the l2-regularized linear regression problem would be

min
θ

n∑
m=1

fm(θ) = min
θ

n∑
m=1

E‖Smθ − Um‖2 +
α0

2
‖θ‖2, (4)

where Sm is the matrix of state vectors observed from rolling out πm and Um is
the matrix of labeled controls from the supervisor at the mth iteration.

4.2 Imitation Gradient and Multiple Imitation Gradient

Recently there has be interest in “Imitation Gradient” algorithms. Algorithms
such as Aggrevated and Loki fall in this family. The online gradient de-
scent algorithm from Online Optimization underlies such algorithms and their
variants. While the aforementioned methods have explored more complicated
gradient-based algorithms such as those inspired by the natural gradient and
mirror descent, the analysis in this paper will focus on the basic online gradient
descent algorithm. Online gradient descent proceeds by observing fn at each
iteration and taking a weighted gradient step: θn − η∇fn(θn). In the event that
the resulting parameter lies outside of Θ, it is projected back on the space with
the projection PΘ(θ) = arg minθ′∈Θ ‖θ′ − θ‖.

We also consider a very related algorithm termed Multiple Imitation Gra-
dient, based on the online multiple gradient descent algorithm introduced by
Zhang et al. [16]. This algorithm is identical to the Imitation Gradient, but at
each iteration it updates the policy parameters K times, recomputing the gradi-
ent each time. Imitation Gradient is a special case of Multiple Imitation Gradient
where K = 1. The algorithms are shown together in Algorithm 2.
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5 Dynamic Regret

We are interested in showing that the policies generated by these algorithms
perform well on the loss on their own induced trajectory distributions and, fur-
thermore, that they converge. This means that we would like the difference
fn(θn) − minθ∈Θ fn(θ) to be as small as possible for every iteration n. This
difference represents the instantaneous regret the algorithm has for playing θn
instead of θ∗n at iteration n where θ∗n := arg minθ∈Θ fn(θ). Summing over n from
1 to N , we have the definition of dynamic regret given in Equation (2).

The more well known static regret, shown in Equation (1), compares an al-
gorithm’s sequence of policies to the minimizer over the the average of losses on
all trajectory distributions seen during training. Static regret has been shown to
be low for strongly convex losses regardless of any external conditions such as
the robot or system dynamics or distributions induced [13]. However, proving
that a policy has low regret compared to the average of the trajectory distribu-
tions gives little indication of whether the policy actually performs well on its
own induced distribution. The reason is that some distributions observed dur-
ing training can be irrelevant to the task due to bad initialization or extremely
sensitive dynamics, but they are still included in the average. As a result, static
regret can be low regardless of actual policy performance or whether the algo-
rithm leads to convergent policies. Prior work has shown in experiments and
theoretical examples that on-policy algorithms do indeed fail on “hard” prob-
lems [2,9]. In order to characterize this notion of problem difficulty, we turn to
dynamic regret.

In Online Optimization literature, dynamic regret has become increasingly
popular to analyze online learning problems where the objective is constantly
shifting [5,8,10,15,16,17]. For example in portfolio management, θn represents an
investment strategy while fn represents some negative return from the market.
If the market is shifting over time, i.e. prices are changing, we are interested
in playing the best strategy for the given state of the market at each time
step. This can be represented as a dynamic regret problem. Dynamic regret
compares the nth policy to the instantaneous best policy on the nth distribution,
which means it is a stricter metric than static regret. The advantage of the
dynamic regret metric that a policy’s performance at any iteration is always
evaluated with respect to the most relevant trajectory distribution, the current
one. Proving dynamic regret is low implies that each policy on average is as good
as the instantaneous best on its own distribution. Furthermore, we can examine
convergence properties of an algorithm by proving that dynamic regret is low.

The dynamic regret of an algorithm is fundamentally dependent on the
change in the loss functions over iterations, often expressed in terms of quantities
called variations. If the loss functions change in an unpredictable manner, we
can expect large variation terms leading to large regret and suboptimal policies.
This is also the reason that sublinear dynamic regret bounds cannot be obtained
in general using only the assumptions commonly used for static regret [15]. In
this paper we consider the commonly used path variation and a squared variant
of it introduced by [16].
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Definition 1 (Path Variation and Squared Path Variation). For a se-
quence of optimal parameters from m to n given by θ∗m:n := (θ∗i )m≤i≤n, the path
variation and the squared path variation are defined respectively as:

V (θ∗m:n) :=

n−1∑
i=m

‖θ∗i − θ∗i+1‖ and S(θ∗m:n) :=

n−1∑
i=m

‖θ∗i − θ∗i+1‖2.

Many algorithms have been proposed and analyzed in this new regret framework
in terms of variation measures of the loss functions. For example, Zinkevich [17]
proved a dynamic regret rate of O(

√
N(1+V (θ∗1:N ))) for online gradient descent

with convex losses. Here, the regret rate is dependent on the rate of the path
variation, which might also be a function of N . Therein lies the difficulty of
dynamic regret problems: no matter the algorithm, rates depend on the variation,
which can be large for arbitrary sequences of loss functions.

Dynamic regret analyses offer a promising framework for theoretical analysis
of on-policy imitation learning algorithms but only as long as the variation can be
characterized. In imitation learning, the variation of the loss functions is related
to the amount of change in the trajectory distributions induced by the sequence
of policies. Ultimately these changes in trajectory distributions are dependent
on the dynamics of the system. We will show in the next section that a single
assumption on the dynamics, introduced by Cheng and Boots [2], can aid in
characterizing the variation.

6 Main Results

In this section, we present the primary theoretical results of the paper, showing
that convergence in average dynamic regret can be guaranteed for all three algo-
rithms under certain conditions on the sensitivity of the trajectory distribution.
We show that it is possible for all algorithms to achieve O(N−1) average dy-
namic regret when these conditions are met. Since dynamic regret upper bounds
static regret, these results suggest that we can also improve static regret rates
of [13] by a logarithmic factor.

We first formally state the assumptions introduced in Section 2. We begin
with common convex optimization assumptions on the loss in the evaluation
parameter. Note that all gradients of f in this section are taken with respect to
the evaluation parameter, i.e. ∇fθ′(θ) denotes the gradient with respect to θ,
not θ′.

Assumption 1 (Strong Convexity) For all θ1, θ2, θ ∈ Θ, ∃α > 0 such that

fθ(θ2) ≥ fθ(θ1) + 〈∇fθ(θ1), θ2 − θ1〉+
α

2
‖θ1 − θ2‖2.

Assumption 2 (Smoothness and Bounded Gradient) For all θ1, θ2, θ ∈
Θ, ∃γ > 0 such that

‖∇fθ(θ1)−∇fθ(θ2)‖ ≤ γ‖θ1 − θ2‖

and ∃G > 0 such that ‖∇fθ(θ1)‖ ≤ G.
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Assumption 3 (Stationary Optimum) For all θ′ ∈ Θ, θ∗ is in the relative
interior of Θ where θ∗ = arg minθ∈Θ fθ′(θ). That is, ∇fθ′(θ∗) = 0.

In practice the above conditions are not difficult to satisfy. For example, running
Dagger with l2-regularized linear regression, i.e. ridge regression, would simul-
taneously satisfy all three. Finally, we state the regularity constraint on the loss
as a function of the distribution-generating parameter.

Assumption 4 (Regularity) For all θ1, θ2, θ ∈ Θ, ∃β > 0 such that

‖∇fθ1(θ)−∇fθ2(θ)‖ ≤ β‖θ1 − θ2‖.

This assumption is introduced as a form a prior knowledge of the dynamics. It
is essentially a sensitivity constraint that implies we are assuming that small
changes in the policy parameters guarantee small changes in the induced trajec-
tory distributions. To prove low dynamic regret it is necessary that some prior
knowledge be incorporated in order to simplify or regulate the variation mea-
sures. In this analysis, we use Assumption 4 because of its precedent in prior
work [2].

We now present the main novel results of this paper for the infinite sample
or deterministic case as in [2,13]. Let θ∗n = arg minθ∈Θ fn(θ) be the optimal
parameter at iteration n. We begin with a result concerning a stability constant
λ := β

α [2]. λ represents the ratio of the sensitivity and the strong convexity.

Proposition 1. Given the assumptions, the following inequality holds on the
difference between optimal parameters and corresponding policy parameters for
any n,m ∈ N:

‖θ∗m − θ∗n‖ ≤ λ‖θm − θn‖.

The proof is in the appendix. Consider the case where m = n + 1. This
proposition suggests that when λ < 1, we know with certainty that ‖θ∗n+1−θ∗n‖ <
‖θn+1−θn‖. In other words, the optimal parameters cannot run away faster than
the algorithm’s parameters. This intuition is also consistent with the findings of
prior work [2], which shows that convergence of the Nth policy can be guaranteed
when λ < 1 for Dagger.

6.1 DAGGER

We now introduce a dynamic regret corollary to Theorem 2 of [2].

Corollary 1. For Dagger under the assumptions, if λ < 1, then the average
dynamic regret 1

NRD tends towards zero in N with rate O(max(N−1, N2λ−2)).

Proof. The proof is immediate from the result of Theorem 2 of [2]. We have

fn(θn) − fn(θ∗n) ≤ (λe1−λG)
2

2αn2(1−λ) . Summing from 1 to N , we get
∑N
n=1 fn(θn) −∑N

n=1 fn(θ∗n) ≤
∑N
n=1

(λe1−λG)
2

2αn2(1−λ) = O(max(1, N2λ−1)). Then the average dy-

namic regret is 1
NRD = O(max(N−1, N2λ−2)), which goes to zero. ut
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The corollary reveals that the convergence result for Dagger proved by
Cheng and Boots can be reframed as a dynamic regret analysis. The rate is
dependent on the stability constant λ < 1. The dynamic regret shows that
policies generated from Dagger on average achieve local optimality and that
for a sufficiently small λ, the regret grows no more than a finite amount.

6.2 Imitation Gradient

For the analysis of dynamic regret bounds for the Imitation Gradient algorithm,
we require a stronger condition that α2 > 2γβ. Written another way, the con-
dition is 2λ < ψ where λ is the stability constant and ψ := α

γ is the condition
number of fn. So we require that the problem is both stable and well-conditioned.
In this proof, we will make use of the path variation.

Theorem 1. For the Imitation Gradient algorithm under the assumptions, if

λ < 1, 2λ < ψ and η = α(α2−2γβ)
2γ2(α2−β2) , then the average dynamic regret 1

NRD tends

towards zero in N with rate O(N−1). Furthermore, ‖θn − θ∗n‖ converges to zero
and the sequence of policies (θn)∞n=1 is convergent.

The proof is in the appendix. Intuitively, the theorem states that if the con-
ditions are met, the dynamic regret grows no more than a constant value. If
we again interpret the variation as describing the difficulty of a problem, this
theorem suggests that under the appropriate conditions, solving an imitation
learning problem with Imitation Gradient algorithms is as easy as solving a
general dynamic regret problem with path variation V (θ∗1:N ) = O(1). In other
words, the equivalent dynamic regret problem is stationary in the limit: the op-
timal parameters cumulatively move no more than a finite distance. The reason
is that the change in the loss functions is so closely tied to the policy parameters
in imitation learning.

6.3 Multiple Imitation Gradient

We now present a similar dynamic regret rate for the Multiple Imitation Gradient
algorithm. This theorem will make use of the squared path variation as opposed
to the path variation. The squared path variation is especially amenable for a
conversion from the standard dynamic regret bound given in [16] to an imitation
learning analysis, as we will see in the proof of the theorem.

A straightforward conversion to characterize the measure of variation can
be established by simply bounding from above the squared path variation by
a quantity proportional to the dynamic regret using Assumption 4. We refer
to this technique as establishing the reverse relationship between the measure
of variation and the dynamic regret. To illustrate this conversion in detail, we
present the proof here, which leverages the general dynamic regret rate for online
multiple gradient descent first given by Zhang et al. [16]
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Lemma 1 (Zhang et al. [16], Theorem 3). If Assumptions 1-3 hold and

η < 1/γ and K = d 1/η+α
2α log 4e, then the following is true for online multiple

gradient descent:

RD(θ1, . . . θN ) ≤ 2γS(θ∗1:N ) + γ‖θ1 − θ∗1‖2.

From this lemma, a specific result for imitation learning can obtained in a
straightforward manner by incorporating the regularity and the strong convexity
of the loss functions.

Theorem 2. For the Multiple Imitation Gradient algorithm under the assump-

tions, if Θ is Euclidean, λ < 1, λ log 4 < ψ3/2, η < min
{

1/γ, α
5/2−γ3/2β log 4
2γ3/2αβ log 4

}
,

and K = d 1/η+α
2α log 4e then the average dynamic regret 1

NRD tends towards
zero in N with rate O(N−1). Furthermore, ‖θn − θ∗n‖ converges to zero and the
sequence of policies (θn)∞n=1 is convergent.

Proof. In the interest of brevity, we skip some of the initial steps. The full proof
can be in the appendix. We begin by establishing the reverse relationship; that
is, we bound from above the squared path variation by a quantity proportional
to the dynamic regret using Proposition 1 and Assumption 4:

S(θ∗1:N ) ≤ 2β2η2γ2K2

α3

N∑
n=1

fn(θn)− fn(θ∗n). (5)

Then by substituting into Lemma 1, we have

RD(θ1, . . . θN ) ≤ γ‖θ1 − θ∗1‖2 +
4β2η2γ3K2

α3

N∑
n=1

fn(θn)− fn(θ∗n)

≤ γ‖θ1 − θ∗1‖2

1− 4β2η2γ3K2

α3

≤ γD2

1− 4β2η2γ3K2

α3

.

It can be verified that for η < min
{

1/γ, α
5/2−γ3/2β log 4
2γ3/2αβ log 4

}
and K = d 1/η+α

2α log 4e,
the denominator is positive. ut

The above theorem demonstrates that again a constant upper bound on the
dynamic regret can be obtained with this algorithm. Interestingly, the conditions
sufficient to guarantee convergence are different. Instead of requiring 2λ < ψ,
this theorem requires λ log 4 < ψ3/2. While log 4 < 2, we also have that ψ3/2 ≤ ψ
because the condition number, which is the ratio of α and γ, is at most 1.

The implication of this observation is that there is a trade-off. For the Mul-
tiple Imitation Gradient algorithm, we can guarantee O(N−1) regret for higher
values of λ, i.e. more sensitive systems, but we must then require that our loss
functions are better conditioned. Conversely, the Imitation Gradient algorithm
achieves a similar guarantee using losses with lower condition numbers, but λ
must be smaller.
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7 Adaptive On-Policy Regularization

We now apply these theoretical results to motivate an adaptive regularization
algorithm to help ensure convergence. As noted by Cheng et al. [2], regularization
can lead to convergent policies for Dagger.

Algorithm 3: Adaptive On-Policy Regularization (AOR)

Input: Initial parameters θ1,
Max iterations N ,
Initial regularization α̂1.

for n = 1 to N − 1 do
Roll out θn and collect trajectory τn.
Observe loss fn(θ) = fθn(θ) from supervisor feedback on τn.
θn+1 ← Update(θn, α̂n).
λ̂n ← Estimate(f1, . . . , fn).
α̂n+1 ← Tune(α̂n, λ̂n).

end for

Adaptive On-Policy Regularization adaptively increases α, the regularization parameter for strong
convexity, to stabilize an on-policy algorithm. The algorithm can be used with any regularized on-
policy algorithm by using the Update subroutine.

In Dagger, Imitation Gradient, and Multiple Imitation Gradient, a key
sufficient condition is that λ < 1, meaning that the strong convexity constant
α must be greater than the regularity constant β. While β is a fixed property
of the dynamics, α is controllable by the user and robot. α can be increased by
increasing the regularization of the supervised learning loss. By Proposition 1, a
lower bound on λ may be estimated by finding the ratio of the distance between

optimal parameters and the distance between policy parameters: λ̂ =
‖θ∗n+1−θ

∗
n‖

‖θn+1−θn‖ .

Therefore, we can propose an adaptive algorithm to compute a new regular-
ization term at each iteration n. One caveat of adaptively updating α is that we
do not want it to be too large. While the regret will converge, the policy per-
formance can suffer as the regularization term will dominate the loss function
and thus the convergent solution will simply be the solution that minimizes the
regularizer. So we want α to be just large enough to converge but no larger.
This subtlety and the the theoretical motivation in the previous subsections are
the basis for Algorithm 3, which we call Adaptive On-Policy Regularization, an
algorithm for making conservative updates to α that can be applied to any regu-
larized on-policy algorithm. At each iteration, the policy is updated according to
a given on-policy algorithm such as Dagger using subroutine Update(θn, α̂n)

which depends on the current regularization. Then λ̂n is computed with sub-
routine Estimate. We use a mean of observed λ values over iterations. Fi-
nally, the α̂n+1 is tuned based on λ̂n. We use a linear weighting update rule:
α̂n+1 = tλ̂nα̂n + (1− t)α̂n for t ∈ (0, 1), where λ̂nα̂n is a conservative estimate
of β.
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8 Empirical Evaluation

We study the empirical properties of Dagger, Imitation Gradient (IG) and
Multiple Imitation Gradient (MIG), showing that even in low dimensional and
convex settings, the implications of the convergence of policies become apparent.
We intentionally sought out cases and chose parameters such that these on-
policy algorithms do not achieve convergence in order to better understand their
properties. We consider completely deterministic domains simply for the sake of
accurately measuring the true dynamic regret. In this evaluation, we attempt to
address the following questions: (1) How are policy performance and dynamic
regret affected by changing system parameters? (2) Can Adaptive On-Policy
Regularization improve convergence of the average dynamic regret and policy
performance?

8.1 Cart-Pole Balancing

First we consider a task where the robot learns to push a cart left or right with
a fixed force magnitude in order to balance a pole upright over 100 iterations.
The control space is discrete {left, right} and the the state space consists of cart
location and velocity and pole angle and angular velocity. We measure the abso-
lute performance of a policy as the angular deviation from the upright position.
We obtained a nonlinear algorithmic supervisor via reinforcement learning. The
robot’s policy was learned using l2-regularized least squares as in (4). In this
setting, we vary the difficulty of the problem, i.e. controlling β, by setting the
force magnitude to either low or high values corresponding to easy and hard
settings, respectively. For all algorithms, the regularization was initially set to
α̂1 = 0.1. Stepsizes η for IG and MIG were set to 0.0001 and 0.01, respectively.
Further details can be found in the appendix.

The instantaneous regrets for all three imitation learning algorithms, mea-
sured as fn(θn)−minθ fn(θ), are shown in the left column of the top and middle
rows of Fig. 1 for both the easy and hard settings, respectively. In the right
column are the actual angular deviations of the pole. Because the convergence
of static regret is guaranteed regardless of the difficulty, we omit it for clarity.
In the easy setting, the algorithms converge to costs similar to the supervisor.
In the hard setting, there is chattering during the learning process. We observe
that regret does not always converge indicating a discrepancy between the su-
pervisor and the learner, which is consistent with the theoretical results that
suggest difficulty influences convergence to the best policy.

The bottom row of Fig. 1 shows that Adaptive On-Policy Regularization
(AOR) can be used to improve dynamic regret. In our implementation of AOR,

we set t = 0.01 and updated λ̂n and α̂n every ten iterations. For IG and MIG
with AOR, we adjusted the stepsize η as a function of α̂n as motivated by the
conditions in the theorems. In practice this counteracts exorbitantly large gradi-
ents caused by large α̂ values. Dagger without AOR exhibits severe chattering.
With AOR, the performance is stabilized, leading to a converged policy. A similar
result is observed for MIG. We note that IG did not exhibit chattering and the
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Fig. 1: Instantaneous regrets are shown in the right column while actual system cost measured as
angular deviation are shown in the left column. All three on-policy algorithms without adaptive
regularization are shown on both the easy (top row) and hard (middle and bottom rows) versions of
cart-pole. This empirical result shows existence of a case where the system is difficult enough that
the algorithms suffer unstable learning curves. The average dynamic regret does not converge. The
bottom row shows the algorithms on the hard setting but using AOR. The dynamic regret tends
towards zero and the chattering in Dagger and MIG is reduced.

learning curve was entirely unaffected. We attribute this to the discrete nature
of the control space; even if the policy parameters have different regret rates, the
resulting trajectories could be the same. We also evaluated the same task over
several different initial conditions. Since averaging the results tends to hide the
chattering, individual plots are give in the appendix.

8.2 Walker Locomotion

Next, we consider a 2-dimensional walker from the OpenAI Gym, where the
objective is to move the farthest distance. Again we induced difficulty and sub-
optimal policies by increasing the force magnitude of controls. Additional infor-
mation on the environment is in the appendix. Ridge regression was used for the
robot’s policy. Here, we set α1 = 1.0 and t = 0.1 for AOR. We used the same
initial η values for IG and MIG and adjusted the stepsize as a function of α̂n
when using AOR. The results are shown in Fig. 2. Without adaptive regulariza-
tion, the average dynamic regret fails to converge and all distance curves exhibit
severe chattering with no stable learning. With AOR, average dynamic regret
converges to zero and all distance curves are stabilized.
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Fig. 2: The instantaneous regrets fail to converge to zero without AOR (top row) and the distance
curves exhibit chattering. With AOR (bottom row), the average dynamic regret converges and chat-
tering is reduced after 200 iterations.

9 Discussion and Future Work

Dynamic regret theory offers a promising method for theoretical analysis in imi-
tation learning. The question of whether an online algorithm leads to converged
or stable policies is inherently captured in dynamic regret, in contrast to static
regret which captures policy performance on the average of the distributions.
Theoretical analyses suggest new conditions to guarantee convergence. The sim-
ulation results suggest that the questions of convergence and optimality must be
addressed when designing an imitation learning robotics systems because stable
performance is not always guaranteed. Indeed, even if static regret is found to
be low, the distributions induced by the robot during training may be far too
unpredictable for stable policy performance to actually be achieved.

In this paper, the analyses relied on Assumption 4. By modeling the problem
with this assumption, we constrained the dynamics to aid the analysis. If other
properties were known about the dynamics, then additional information could
improve regret rates and conditions for optimality. For example, similar problem
statements were studied in [5] and [12] in general Online Optimization. It was re-
cently shown that augmenting the mostly model-free analyses with model-based
learning can improve static regret bounds and performance [3]. We hypothesize
that dynamic regret rates can also be improved in this way.
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10 Appendix

For convenience, the main assumptions of the paper are reproduced here:

– For all θ1, θ2, θ ∈ Θ, ∃α > 0 such that

fθ(θ2) ≥ fθ(θ1) + 〈∇fθ(θ1), θ2 − θ1〉+
α

2
‖θ1 − θ2‖2.

– For all θ1, θ2, θ ∈ Θ, ∃γ > 0 such that

‖∇fθ(θ1)−∇fθ(θ2)‖ ≤ γ‖θ1 − θ2‖

and ∃G > 0 such that ‖∇fθ(θ1)‖ ≤ G.
– For all θ′ ∈ Θ, θ∗ is in the relative interior of Θ where θ∗ = arg minθ∈Θ fθ′(θ).

That is, ∇fθ′(θ∗) = 0.
– For all θ1, θ2, θ ∈ Θ, ∃β > 0 such that

‖∇fθ1(θ)−∇fθ2(θ)‖ ≤ β‖θ1 − θ2‖.

The proofs in this paper will make heavy use of the following well-known result
on the strong convexity of a function [7].

Lemma 2. The following holds for all θ ∈ Θ and θ∗ = arg minθ′ f(θ′):

f(θ)− f(θ∗) ≥ α

2
‖θ − θ∗‖2.

10.1 Proof of Proposition 1

Proof. By strong convexity of fm, we have

α

2
‖θ∗m − θ∗n‖2 ≤ fm(θ∗n)− fm(θ∗m)

≤ ‖∇fm(θ∗n)‖‖θ∗n − θ∗m‖ −
α

2
‖θ∗m − θ∗n‖2

Then by rearranging terms, ‖θ∗m−θ∗n‖ ≤ 1
α‖∇fm(θ∗n)−∇fn(θ∗n)‖ ≤ β

α‖θm−θn‖,
where the last inequality uses Assumption 4. ut

10.2 Proof of Theorem 1

Before directly proving this theorem, we establish several supporting results
based on the path variation.

Lemma 3. For a sequence of predictions made by the online gradient descent al-
gorithm θ1:N and a sequence of optimal parameters θ∗1:N , the following inequality
holds on the path variation:

V (θ∗1:N ) ≤ ηβγ
α

N∑
n=1

‖θn − θ∗n‖.
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Proof. From Proposition 1, we have ‖θ∗n+1−θ∗n‖ ≤
β
α‖θn+1−θn‖ = β

α‖η∇fn(θn)‖ =

η βα‖∇fn(θn)−∇fn(θ∗n)‖ ≤ η βγα ‖θn − θ
∗
n‖, where the the final equality uses As-

sumption 3 and the final inequality uses Assumption 2. Then the result follows
immediately. ut

Lemma 4. Let ρ = (1 − αη + γ2η2)1/2, which is always non-negative for any
positive choice of η because γ ≥ α by definition. Then the following inequality
holds

N∑
n=1

‖θn − θ∗n‖ ≤ ‖θ1 − θ∗1‖+

N∑
n=1

ρ‖θn − θ∗n‖+ V (θ∗1:N ).

Proof. By strong convexity we have the following: 0 ≤ 2(fn(θn) − fn(θ∗n)) ≤
2〈∇fn(θn), θn − θ∗n〉 − α‖θ∗n − θn‖2. By the update rule given in the algorithm:

‖θn+1 − θ∗n‖2 = ‖θn − η∇fn(θn)− θ∗n‖2

= ‖η∇fn(θn)‖2 + ‖θn − θ∗n‖2 − 2η〈∇fn(θn), θn − θ∗n〉. (6)

By rearranging the terms in (6) and combining with the very first inequality, we
arrive at the following:

‖θn+1 − θ∗n‖2 ≤ (1− αη)‖θn − θ∗n‖2 + ‖η∇fn(θn)‖2.

Using Assumption 2 and the fact that ∇fn(θ∗n) = 0 and the smoothness of fn:

‖θn+1 − θ∗n‖2 ≤ ‖θn − θ∗n‖2 − αη‖θn − θ∗n‖2 + η2‖∇fn(θn)−∇fn(θ∗n)‖2

≤
(
1− αη + γ2η2

)
‖θn − θ∗n‖2. (7)

Then let ρ =
(
1− αη + γ2η2

)1/2
. Following from [10], consider the series:

N∑
n=1

‖θn − θ∗n‖ = ‖θ1 − θ∗1‖+

N∑
n=2

‖θn − θ∗n−1 + θ∗n−1 − θ∗n‖

≤ ‖θ1 − θ∗1‖+
N∑
n=2

‖θn − θ∗n−1‖+ V (θ∗1:N )

≤ ‖θ1 − θ∗1‖+

N∑
n=1

ρ‖θn − θ∗n‖+ V (θ∗1:N ),

where the second line uses the definition of the path variation and the third line
uses (7). ut

Proof (Proof of Theorem 1). We begin by bounding the result from Lemma 4
above by Lemma 3:

N∑
n=1

‖θn − θ∗n‖ ≤ ‖θ1 − θ∗1‖+

(
ρ+ η

βγ

α

) N∑
n=1

‖θn − θ∗n‖.
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By rearranging the terms and bounding by the diameter of Θ:

N∑
n=1

‖θn − θ∗n‖ ≤
D

1− ρ− η βγα
. (8)

It can be shown that, under the assumptions, the choice of η = α(α2−2βγ)
2γ2(α2−β2)

ensures that
(

1− ρ− η βγα
)

is positive. By the G-Lipschitz continuity of fn, we

have

N∑
n=1

fn(θn)−
N∑
n=1

fn(θ∗n) ≤ GD

1− ρ− η βγα
,

and so RD(θ1, . . . , θN ) = O(1). So we have 1
NRD = O(1/N) which goes to zero.

Convergence of ‖θn−θ∗n‖ to zero can proved in the following way. Because we
bounded the dynamic regret by a constant, we have that there exists some non-
negative constant B such that limN→∞

∑N
n=1 fn(θn)−fn(θ∗n) ≤ B. From Lemma

2, we have ‖θn − θ∗n‖2 ≤ 2
α (fn(θn)− fn(θ∗n)), and so the following inequality

holds:
∞∑
n=1

‖θn − θ∗n‖2 ≤
2B

α
.

Define αn = ‖θn − θ∗n‖2. Also define the partial series pN :=
∑N
n=1 an. Note

that the sequence (pn)Nn=1 is monotonic because an ≥ 0. By the monotone con-
vergence theorem, we have that there is a non-negative limit point L such that
limN→∞ pN = L. L is the supremum of (pn)Nn=1. We apply a known result
from analysis that if an infinite series converges, its sequence of elements con-
verges to zero. Because limN→∞(pn)Nn=1 converges and limN→∞(an)Nn=1 is the
sequence of elements, then limN→∞ an = 0. So by definition of an, the sequence
(‖θn − θ∗n‖)n∈N converges to zero. This tells us that the policy parameters con-
verge to the optima.

The proof of convergence of the parameters takes a similar approach. We
note that from the proof of Lemma 3, we have

1

ηγ
‖θn+1 − θn‖ ≤ ‖θn − θ∗n‖,

which means if we define bn := ‖θn+1 − θn‖ and qN :=
∑N
n=1 bn, we have

limN→∞ qN ≤ ηγ D
1−ρ−η βγα

for all N . Since the series of distances between consec-

utive elements converges (bn)n∈N, we have that the sequence (θn)Nn=1 converges
in the limit.

ut

10.3 Proof of Lemma 1

The result of Lemma 1 is a slight modification from Theorem 3 from Zhang et al.
[16], which is reproduced in full here with supporting lemmas for completeness.
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For all following proofs, unless stated otherwise, we assume f : Θ 7→ R always
satisfies Assumptions 1-3. Again before proving this theorem, we establish a cru-
cial lemma. As in the proof of Theorem 1, we show a bound on the improvement
from a single gradient step.

Lemma 5. Let θ′ be the current parameter played by the algorithm at any iter-
ation, θ̂ = PΘ(θ′ − η∇fn(θ′)) and θ∗n = arg minθ fn(θ). Then we have

‖θ̂ − θ∗n‖2 ≤
(

1− 2α

1/η + α

)
‖θ′ − θ∗n‖2.

Proof. By the update rule:

θ̂ = PΘ(θ′ − η∇fn(θ′))

= arg min
θ∈Θ

‖θ′ − η∇fn(θ′)− θ‖2

= arg min
θ∈Θ

{
2〈η∇fn(θ′), θ − θ′〉+ ‖θ′ − θ‖2 + ‖η2∇fn(θ′)‖2

}
= arg min

θ∈Θ

{
fn(θ′) + 〈∇fn(θ′), θ − θ′〉+

1

2η
‖θ′ − θ‖2

}
= arg min

θ∈Θ
hn(θ)

where we define hn(θ) := fn(θ′) + 〈∇fn(θ′), θ− θ′〉+ 1
2η‖θ

′− θ‖2. Note that h(θ)

is 1
η -strongly convex. So by applying Lemma 2 to hn and by the fact that θ̂ is

the minimizer of h, we have

hn(θ̂) ≤ hn(θ∗n)− 1

2η
‖θ̂ − θ∗n‖2

By the strong convexity of fn it holds that fn(θ′)+〈∇fn(θ′), θ∗n−θ′〉 ≤ fn(θ∗n)−
α
2 ‖θ
′ − θ∗n‖2. By smoothness and the fact that η < 1/γ and Θ is Euclidean, we

also have

fn(θ̂) ≤ fn(θ′) + 〈∇fn(θ′), θ̂ − θ′〉+
γ

2
‖θ′ − θ̂‖2 ≤ hn(θ̂)

Combining these inequalities gives

fn(θ̂) ≤ fn(θ∗n)− α

2
‖θ′ − θ∗n‖2 +

1

2η
‖θ′ − θ∗n‖2 −

1

2η
‖θ̂ − θ∗n‖2

By applying Lemma 2 again we have:

α

2
‖θ̂ − θ∗n‖2 ≤ −

α

2
‖θ′ − θ∗n‖2 +

1

2η
‖θ′ − θ∗n‖2 −

1

2η
‖θ̂ − θ∗n‖2

The result can be obtained by rearranging and aggregating the terms and then
simplifying. ut

We now present the proof of Lemma 1.
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Proof (Proof of Lemma 1). According to the update rule of multiple gradients
we apply the result established in Lemma 5 K times which gives

‖θn+1 − θ∗n‖2 ≤
(

1− 2α

1/η + α

)K
‖θn − θ∗n‖2

≤ exp

(
− 2αK

1/η + α

)
‖θn − θ∗n‖2

≤ 1

4
‖θn − θ∗n‖2

Then, as in Theorem 1, we bound the distances between the optimal parameters
and the algorithm’s parameters.

N∑
n=1

‖θn − θ∗n‖2 = ‖θ1 − θ∗1‖2 +

N∑
n=2

‖θn − θ∗n−1 + θ∗n−1 − θ∗n‖2

≤ ‖θ1 − θ∗1‖2 + 2

N∑
n=2

‖θn − θ∗n−1‖2 + ‖θ∗n−1 − θ∗n‖2

≤ ‖θ1 − θ∗1‖2 +

N∑
n=2

1

2
‖θn−1 − θ∗n−1‖2 + 2‖θ∗n−1 − θ∗n‖2

≤ 2‖θ1 − θ∗1‖2 + 4

N∑
n=2

‖θ∗n−1 − θ∗n‖2

≤ 2‖θ1 − θ∗1‖2 + 4S (θ∗1:N )

Finally, by the smoothness of all fn we have

N∑
n=1

fn(θn)− fn(θ∗n) ≤
N∑
n=1

γ

2
‖θn − θ∗n‖2

≤ 2γS(θ∗1:N ) + γ‖θ1 − θ∗1‖2.

ut
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10.4 Full Proof of Theorem 2

We begin by upper bounding the squared path variation using Proposition 1 and
Assumption 4:

‖θ∗n+1 − θ∗n‖ ≤
β

α
‖θn+1 − θn‖

≤ βη

α
‖∇fn(θ1

n) + . . .+∇fn(θKn )‖

≤ βη

α

K∑
j=1

‖∇fn(θjn)‖

=
βη

α

K∑
j=1

‖∇fn(θjn)−∇fn(θ∗n)‖

Next we apply Lemma 5 as before:

‖θ∗n+1 − θ∗n‖ ≤
βηγ

α

K∑
j=1

‖θjn − θ∗n‖

≤ βηγ

α
‖θn − θ∗n‖

K∑
j=1

(
1− 2α

1/η + α

)j
≤ βηγK

α
‖θn − θ∗n‖

Summing over all n, we have

S(θ∗1:N ) ≤
(
βηγK

α

)2 N∑
n=1

‖θn − θ∗n‖2

Then by substituting into Lemma 1 and bounding the quantity from above using
the strong convexity of fn, we have

RD(θ1, . . . θN ) ≤ γ‖θ1 − θ∗1‖2 +
2β2η2γ3K2

α2

N∑
n=1

‖θn − θ∗n‖2

≤ γ‖θ1 − θ∗1‖2 +
4β2η2γ3K2

α3

N∑
n=1

fn(θn)− fn(θ∗n)

≤ γ‖θ1 − θ∗1‖2

1− 4β2η2γ3K2

α3

≤ γD2

1− 4β2η2γ3K2

α3

It can be verified that for η < min
{

1/γ, α
5/2−γ3/2β log 4
2γ3/2αβ log 4

}
and K > 1/η+α

2α log 4,

the denominator is positive.
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The proof of convergence of the ‖θn − θ∗n‖ to zero is identical to that of
Theorem 1.

The proof of convergence of the sequence θ1:N similar, but we must return
to the path variation. We begin again with the proof of Lemma 1 where we have
for any n

‖θn+1 − θ∗n‖ ≤
1

2
‖θn − θ∗n‖. (9)

Then, as before, we bound the sum of the differences between policy parameters
and optima, but without the square

N∑
n=1

‖θn − θ∗n‖ ≤ 2‖θ1 − θ∗1‖+ 2V (θ∗1:N ) (10)

By bounding the path variation from above using Lemma 5 and again rearrang-
ing terms, a constant upper bound on

∑N
n=1 ‖θn−θ∗n‖ is established in the same

way as Theorem 1 except we require 1 > 2βηγK
α , but this is satisfied with the

same condition on η. The rest of proof proceeds exactly in the same way as
Theorem 1. Therefore with Multiple Imitation Gradient, θ1:N converges in the
limit.

10.5 Additional Information and Experiments on Cart-Pole

The code is available at https://github.com/jon--lee/aopr.
To generate the easy and hard versions of cart-pole balancing, we varied

the parameter controlling the force magnitude applied with each left or right
control. A low force magnitude of 2.0 was used for the easy setting and a higher
force magnitude of 10.0 was used for the hard setting. The value 2.0 was the
smallest integer before the force was too low to control the cart. The value 10.0
was one of the highest before we noticed the average λ values began to decrease
as a function of the force magnitude. As mentioned, the parameters η and α1

where intentionally chosen so that the task would exhibit unstable or suboptimal
results. Trajectories were 200 time steps long.

In order to estimate λ̂n between each iteration, we compute ‖θn − θn−1‖
directly since both quantities are known. Because each fn are strongly convex
supervised learning problems, full information is known fn and so the mini-
mum θ∗n = arg min fn(θ) can be solved. In this case, fn corresponded to a l2-
regularized ridge regression problem which has a closed form solution. In the
case of stochastic problems, it may be necessary to obtain a sample estimate of
fn first by collecting several trajectories per iteration and then estimate θ∗n from

the sample average. Our estimate of λ̂n was simply the ratio of these normed
differences averaged over iterations. Note that λ as defined in Assumption 4,
is a global constant, but in practice only local regions may be relevant for the
problem at hand, which is why we estimate λ at each iteration.

Here, we run the same cart-pole experiment but over 10 different initial pole
angle conditions. The cost curves are shown, measured as angular deviation from

https://github.com/jon--lee/aopr
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the upright position. The top row show shows without AOR and the bottom row
shows with AOR. Each column corresponds to the same initial conditions.

To conserve space, only the last 50 iterations are shown, which is when the
curves are typically stabilized by adaptive regularization. Dagger and MIG see
a reduction of chattering in most cases when using AOR in Fig. 3 and Fig. 4,
while IG in Fig. 5, as before, has no difference at all.
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Fig. 3: Dagger angular deviations over 10 different initial conditions.
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Fig. 4: MIG angular deviations over 10 different initial conditions.

10.6 Additional Information and Experiments in Walker

To induce high regret policies in the walker domain, we increased the force of
controls five-fold. As in cart-pole, trajectories consisted of 200 time steps and
one trajectory was collected and evaluated at each of the 300 iterations. Again,
there was no stochasticity in the environment for the sake of computing the
instantaneous regret.

We also evaluated the effect of AOR on a different OpenAI gym task hopper
with exactly the same hyperparameter settings. The results are shown in Fig. 6.
We note that although chattering is reduced, the distance traveled on average
suffers. This is one disadvantage of adaptive regularization that was noted earlier.
Increased regularization, although leading to convergence of average dynamic
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Fig. 5: IG angular deviations over 10 different initial conditions.

regret, can cause poor policy performance if it is excessive. This example suggests
that from a practical perspective, it is important to monitor both the regret and
whatever qualitative or quantitative metrics are actually desired to ensure that
they agree.
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Fig. 6: OpenAI Gym hopper on the same conditions as the walker experiment. As observed in prior
experiments, on-policy algorithms without proper regularization lead to unstable learning. With
adaptive regularization the learning is stabilized; however, in this case, performance on the system
is reduced.

10.7 Discussion on the Relation Between Regularization and
Stepsize

Both the IG and MIG algorithms use an additional hyperparameter as part of
the optimization procedure: the stepsize η. As the regularization therm α is
increased, whether using AOR or just arbitrarily, the stepsize in theory should
decrease based on the conditions presented in Theorem 1 and Theorem 2. There-
fore, there is an inherent connection between the stepsize and the amount of
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regularization. This is similar to results in convex optimization: increased strong
convexity parameters imply increased smoothness parameters because α < γ.
This, in turn, calls for small stepsizes to achieve converges guarantees.

We observe the same effect in MIG and IG, especially when using AOR. High
regularization means better convergence and low regret. At each iteration, we
want the update to take us in the direction of the optimal parameter. But the step
should be small enough such that at the next iteration, the optimal parameter
does not move too far. Therefore, the stepsize must be carefully balanced. This
motivates the adaptive updates to η in AOR as well. η can be thought of as a
function of α rather than a separate, independent hyperparameter. For reference,
the change in regularization of α̂n on all three domains is give in Fig. 7.

10.8 Empirical Results with Static Regret

It has been proven theoretically that static regret converges to zero under the
assumptions in this paper and these experiments [6,13]. In this section, we em-
pirically evaluate these results for completeness. The results compare the static
regret of all three algorithms with and without AOR across and the actual sys-
tem cost is reproduced side-by-side for convenience.

As shown in Fig. 8, Fig. 9, and Fig. 10, static regret nearly always tends to
zero regardless of the actual policy performance or chattering. This is consistent
with the theoretical results of prior work [6].
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Fig. 7: The regularization parameter α̂n using AOR increases until the instantaneous regret converges
in all three experimental domains. In Walker and Hopper, especially high regularization is needed
to guarantee convergence in regret.
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Fig. 8: The identical cart-pole experiment as in Fig. 1 is reproduced but plotting static regret instead
of the instantaneous regret. In this environment, the static regret quickly decreases to zero with and
without AOR and even in the difficult domain. The regret shows no indication that the actual policy
is performing poorly over iterations.
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Fig. 9: The static regret is plotted against the number of iterations. As in the cart-pole environment,
the regret descends to zero matter the agent’s true performance on the system. The exception is
the Imitation Gradient algorithm which achieves a seemingly high static regret without adaptive
regularization. We hypothesize that proportionately large static regret is a result of suboptimal
stepsizes for this particular algorithm in this domain. In theory, this regret converges over many
iterations.
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Fig. 10: For the Hopper environment, the static regret again tends to zero in all cases, showing it is
not reflective of the true system costs.
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