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Abstract— For applications in education and entertainment,
Scalable Internet-based Collaborative Teleoperation allows many
users simultaneously to share control of a single device. Au-
tomated numerical methods that can assess and record per-
formance provide an incentive for users to participate and a
means to evaluate individual and group performance. In this
paper we describe “unsupervised scoring”: a numerical approach
to assessment based on clustering and response time. Like
unsupervised learning, this approach is based on identifying
regularities in the input rather than comparing input with
desired output specified by an external supervisor. We present an
algorithm for rapidly computing user scores that scales linearly
with the number of users. We describe an implemented Java-base
user interface incorporating this metric, an application based on
the classic Twister game, and results where individual scores are
compared with group performance.

I. I NTRODUCTION

Remote-controlled machines and teleoperated robots have a
long history [30]. Networks such as the Internet provide low-
cost and widely-available interfaces that makes such resources
accessible to the public. In almost all existing teleoperation
systems, a single human remotely controls a single machine.
For applications in education and entertainment, we are de-
veloping consider Collaborative teleoperation (CT) systems
that allow many users to simultaneously share control. In a
taxonomy proposed by Tanie et al. [3], these are Multiple
Operator Single Robot (MOSR) systems in contrast to con-
ventional Single Operator Single Robot (SOSR) systems.

In MOSR systems, inputs from many participants are com-
bined to generate a single control stream. There can be benefits
to collaboration: teamwork is a key element in education at
all levels [27], [5], [4] and the group may be more reliable
than a single (possibly malicious) participant [11]. In [13],
we introduced the “Tele-Actor”, a system involving a skilled
human with cameras and microphones connected to a wireless
digital network, who moves through the remote environment
based on live feedback from online users.

In Tele-Actor field tests with students ranging from middle
and high-school to graduate students, we discovered that stu-
dents would often become passive, simply watching the video
without participating. Also, instructors asked for a mechanism
to quantify student performance for grading purposes. We
realized we could address both issues with an “unsupervised
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Fig. 1. Above, (a) illustrates a sample view from our scalable user
interface, where spatial inputs from users are represented with colored square
markers, in this case indicating points of interest in a live video image. The
unsupervised scoring metric assigns a scalar value to each input. Below,
(b) illustrates the aggregate (consensus) density distribution that is used to
automatically compute scores based on vote arrival time.

scoring” system that provides a competitive element to the
interactions and continually assesses students.

This paper describes the unsupervised scoring metric and
algorithms for rapidly computing it. In “supervised learning,”
system outputs are compared against desired outputs and
parameters adjusted accordingly. In “unsupervised learning”,
desired outputs are unspecified: learning proceeds by identi-
fying and rewarding inherent structure in the input patterns.
Analogously, “unsupervised scoring” is based on identifying
regularities in collective user input rather than comparing
these inputs with desired outputs as specified by an external
supervisor.
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In our model, individual performance is based on ”lead-
ership”: how quickly a user anticipates the decision of the
majority. As illustrated in Figure 1, the unsupervised scoring
metric is based on clustering of user inputs. Forn users,
computing scores runs inO(n) time. This paper presents
problem formulation, distributed algorithms, and experiment
results.

II. RELATED WORK

Networked robots, controllable over networks such as the
Internet, are an active research area. In addition to the chal-
lenges associated with time delay, supervisory control, and
stability, online robots must be designed to be operated by non-
specialists through intuitive user interfaces and to be accessible
24 hours a day. There are now dozens of Internet robots
online, a book from MIT Press [12], and an IEEE Technical
Committee on Internet and Online Robots. See [16], [28], [17],
[18], [25], [14], [26], [20], [22] examples of recent projects.

Tanie, Matsuhira, Chong, et al. [3] proposed a useful
taxonomy for teleoperation systems: Single Operator Single
Robot (SOSR), Single Operator Multiple Robot (SOMR), and
Multiple Operator Multiple Robot (MOMR).

Most networked robots are SOSR, where control is limited
to one human operator at a time. Tanie et al. analyzed an
MOMR system where each operator controls one robot arm
and the robot arms have overlapping workspaces. They show
that predictive displays and scaled rate control are effective
in reducing pick-and-place task completion times that require
cooperation from multiple arms [3].

In an MOMR project by Elhajj, Fukuda, Liu, Xi, and
colleagues [7], two remote human operators collaborate to
achieve a shared goal such as maintaining a given force on
an object held at one end by a mobile robot and by a multi-
jointed robot at the other. MOMR models are also relevant
to online collaborative games such asQuakeand The Sims
Online, where players remotely control individual avatars in a
shared virtual environment.

One precedent for an online MOSR system is described in
McDonald, Cannon and colleagues [24]. For waste cleanup,
several users to assist remotely using Point-and-Direct (PAD)
commands [2]. Users point to cleanup locations in a shared im-
age and a robot excavates each location in turn. In this Internet-
based MOSR system, collaboration is serial but pipelined,
with overlapping plan and execution phases. The authors
demonstrate that such collaboration improves overall execution
time but do not address conflict resolution between users.

In [11], Goldberg, Chen, et al present an Internet-based
MOSR system that averaged multiple vector inputs to control
the position of an industrial robot arm. In [31], we present
another MOSR system that allow a group of users to simulta-
neously share control of a single robotic camera. We formulate
MOSR problem as resource allocation problem and develop
algorithms for camera control.

Outside of robotics, the notion of MOSR is related to
a very broad range of group activities including compute
gaming, education, social psychology, voting, etc. Although
there currently are no standard “best practices” for the design

of scoring systems in the computer games industry, some
tentative efforts recently have been made to identify the key
features of an effective scoring and ranking model. GamaSutra,
the flagship professional resource for digital game designers
from around the world, has proposed four characteristics of a
successful scoring system. It should be reproducible (consis-
tent), comprehensive (incorporating all significant aspects of
game play), sufficiently detailed (so that players understand
how it is calculated), and well-balanced (allowing for players
to stay competitive even when playing from a disadvantage)
[19]. Kriemeier suggests that a failure to address each of
these four principles will negatively affect user participation
and motivation. Proposed customizations to further increase
player motivation in a system with these four standard fea-
tures include introducing non-zero sum (cooperative) scoring
elements and a score decay algorithm that will penalize players
for a lower rate of participation in the game. The Tele-Actor
unsupervised scoring model aims to incorporate these features,
and to investigate their value and effectiveness from a user-
perspective.

Two different areas in educational psychology investigate
the usefulness of games in learning. The first addresses the
element of ”fun” in games as a powerful motivational tool
[10], [15]. In particular, cooperative play models are thought
to provide particularly powerful evidence of games as tools of
engagement; as Sutton-Smith notes [32], children and young
adults are so motivated to be accepted in such play, they make
sacrifices of egocentricity for membership in the group, a claim
that may be tested by the unsupervised scoring model.

Csikszentmihalyi’s theory of “flow” [6], a confidence-
building state in which a participant becomes absorbed in
and highly effective at a particular activity, argues for the
importance of feedback as the primary criterion for achieving
flow. According to Csikszentmihalyi, flow creates a sense of
motivation that is intrinsic to the activity, rather than relying
on extrinsic rewards (prizes, grades, acclaim), and intrinsic
motivation is ultimately more important for long-term success
in any activity. For example: Gee [9] argues that students today
are used to experiencing flow and achieving a sense of mastery
in their at-home game play, but not in school. Many educators
are considering adopting more game-like scenarios for learning
as a way to incorporate students’ proclivity for structured play.

Group decision-making is sometimes modelled as an n-
person (multi-player) cooperative game [33], [1]. We can view
the our system as a non-zero sum multi-player game in which
users both compete and cooperate to increase their individual
leadership scores. Our leadership metric may be useful for
evaluating cooperative behavior in real-life [23], [29].

A related question is, how do players learn game strategies
and adapt their game play behavior accordingly over time?
The study of adaptive learning models in games attempts
to develop a theory of ”game cognition” that explains why
people do not always discover or follow optimal strategies in
game play [21]. Erev and Roth [8], for instance, argue for
the importance of the presence or absence of reinforcement
and feedback within a repetitive game structure as the most
important factor in predicting player action. By providing
feedback in the form of a leadership score and simultaneously
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Fig. 2. The Spatial Dynamic Voting (SDV) interface as viewed in the browser by each online voter. Low framerate live video (approx 1 fps) is displayed in
the left window. Users vote on spatial preferences using their mouse to position a small marker (votel) in the middle (voting) window, over either a prestored
or live image. Users view the position of all votels and can change their votel positions based on group dynamics. As described below, votel positions are
processed to assign scores to each user. The list of active voters, ranked by score is displayed in the right window. The lower right window displays a plot
of voter score, overall average, and scores for the top three voters.

tracking changes in scores over time, we can numerically
compare individual and group performance.

III. PROBLEM DEFINITION

Figure 2 illustrates the user interface.
In this section, we propose an unsupervised scoring metric

based spatial distributions of votes.

A. Inputs and assumptions

Consider thekth voting image. The server receives a
response from useri in the form of an (x, y) mouseclick
on imagek at time t. We define the correspondingvotel:
vik(t) = [xik(t), yik(t)].

Each votel represents a user’s response (”vote”) to the voting
image. We model such responses with avoter interest function,
a density function based on the bivariate normal distribution:

fik(x, y) ∼ N(vik(t), Σik(t))

wherevik(t) is the mean vector andΣik(t) is a2×2 variance
matrix, such that,∫∫

σ

fik(x, y) dx dy = 1

whereσ is the area of the voting image. Sinceσ is a bounded
2D region, the voter interest function is a truncated bivariate
normal density function with mean atvik(t) as illustrated in
Figure 3(a).

1) Majority Interest Function:When voting on imagek
ends at stopping timeT , the last votel received from each
of n active voters determinesVk, a set of n votels. We
define theensemble interest functionfor voting imagek as
the normalized sum of these voter interest functions.

fk(x, y) =
1
n

n∑

i=1

fik(x, y).

2) Consensus Regions:As illustrated in figure 3(c), we can
extract spatial regions by cutting the ensemble interest function
using a horizontal plane at a height proportional to the overall
volume. Letzk be the cutting threshold. Thezk value satisfies
the condition that the ratio between the partial volume of the
ensemble interest function above the horizontal plane and the
total volume of the ensemble interest function is constantr.
We use a value of 0.10 (10% of the volume lies above the
plane). The cutting plane defines an iso-density contour in the
ensemble interest function that defines a set of one or more
closed subsets of the voting image,

Sk = {(x, y)|fk(x, y) ≥ zk}.
As illustrated in Figure 3(c), we refer to these subsets as

consensus regions:

Sk = {C1k, C2k, ..., Clk}.
Since there aren voters,l ≤ n is number of consensus regions.

3) Majority Consensus Region:GivenSk, Vk, themajority
consensus regionis the region with the most votels (breaking
ties arbitrarily). Let

Ik(i, j) =
{

1 if [xik(T ), yik(T )] ∈ Cjk

0 otherwise

The count

nkj =
n∑

i=1

Ik(i, j)

is the number of votels inside consensus regionj of voting im-
agek. Breaking ties arbitrarily, letC∗k , the majority consensus
region, be anyCjk with max nkj .

B. Unsupervised Scoring Metric

We measure individual performance in terms of “leader-
ship”. By definition, a “leader” anticipates the choices of the
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Fig. 3. An example of voter interest functions, the corresponding majority interest function, and an illustration of consensus region generation for the voting
image in Figure 2.

group. In our context, a leader is an individual who votes early
in a position consistent with the majority consensus region.
DefineIs is an outcome index for voteri and voting images:

Is,i =
{

1 if [xi,s(Ts), yi,s(Ts)] ∈ C∗s
0 otherwise

Definets,i as the duration of the time that voteri’s votel stays
in the majority interest region for thesth voting image,Ts

is the total voting time for voting images. Therefore term
Ts−ts,i

Ts
Is,i characterizes how well the voter anticipated the

majority consensus region for the voting images.
To smooth out rapid changes in user scores, we pass the term

to the following low pass filter to get a stabilized “Leadership
score”:

Lk+1,i = (1− α)Lk,i + α
Tk − tk,i

Tk
Ik,i

where the initial valueL0,i = 0 for each voteri. The value of
filter factorα is set to0.1 in our experiments to allow smooth
fluctuation in user scores.

Note that this scoring metric depends only on the spatio-
temporal pattern of votes and does not require a human expert.

IV. D ISTRIBUTED ALGORITHM

To compute the unsupervised score for each user, we start
by maintaining the ensemble interest function with a grid. We
partition the voting image into 160× 160 regular cells. For
each voter interest functionfik(x, y), we discretize it into a 2D
array with respect to the same lattice resolution. Depending on
the variance of the Gaussian function and accuracy threshold,
each element of the 2D array only contains constant number of
non-zero entries. Therefore, to compute the ensemble interest
function for n votes, we add those n 2D arrays into the cells.
This operation takesO(n). Figure 3(b) shows the shape of
the ensemble interest function for the voter interest function
in 3(a).

As illustrated in figure 3(c), we can extract spatial regions
by cutting the ensemble interest function using a horizontal
cutting plane. The next step is to compute the height of the
cutting planezk for the given volume ratior. Define r(z),
z > 0 be the volume ratio between the partial volume of
the majority interest function above the cutting plane with
heightz and the total volume of the ensemble interest function.
As z increases, the horizontal plane rises. Hencer(z) is a
monotonic decreasing function ofz. A binary search can

find zk in O(log(1/ε)) steps with errorε. Since we need to
compute the partial volume for each step, which takes at most
O(m) for m cells in the grid. Therefore, the complexity for
computing the threshold isO(log(1/ε)m). If we considerε
as a constant, then it isO(m).

The second step is to perform the threshold for the ensemble
function and find connected components, each of which forms
a consensus region. The connected components algorithm
makes two passes through the 2D array processing a row
of cells at a time, from left to right. During the first pass,
each cell is assigned the minimum label of its neighbors or
if none exists, a new label is assigned. If neighboring cells
have different labels, those labels are considered equivalent
and entered into an equivalence table. The second pass uses
the equivalence table to assign the minimum equivalent label to
each non-zero entry. Since, this step also takesO(m) time, the
total computation time for computing the consensus regions
for a given ensemble interest function isO(m).

To determine the majority consensus region, we need to
count the number of votels inside each consensus region. For
this purpose, each cell maintains a votel count that is updated
during votel insertions. In a single pass, we can sum the
number of votels in the cells belonging to each consensus
region. Thus, this step takesO(m) time.

If we add computation time of algorithms for ensemble in-
terest function, consensus regions, majority consensus regions,
and leadership score together, the total computation time is
O(n + m).

Fig. 4. Processing time for computing the unsupervised scoring metric as a
function of the number of voters based on trials using random voter positions.

The algorithm has been implemented and runs on the client
side using Java. We tested the algorithm using a 750Mhz
PC Laptop with 256Mb RAM. Figure 4 illustrates the linear
scalability of the algorithm in terms of number of voters.
The Tele-Actor server is primarily responsible for distributing
voting data to all users. Each client sends the user’s voting data
and receives updated voting data from the Tele-Actor server
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every 1.0 seconds. For every server update, at mostn new
voter interest functions will need to be inserted. Using the up-
dated interest functions, the consensus regions and the majority
consensus region are recomputed. When a voting cycle ends,
each voter computes only the voter’s new leadership score,
thus distributing the scoring calculations among the clients.

V. THE “T ELE-TWISTER” A PPLICATION

To understand how the unsupervised scoring metric works
with groups of participants and to test software reliability,
we developed a collaborative teleoperation system based on
Twister, the classic party game. The result is a sequence of
multi-player non-zero sum games embedded inside a sequence
of two-player zero sum games.

Twister was the first board game where human bodies are
the board pieces. In the classic game, human players inter-
act over a large plastic playing surface. Players sequentially
place their hands and feet on colored circular targets chosen
randomly (eg, Left foot: GREEN). The challenge for players
is to maintain placement of hands and feet in increasingly
difficult combinations without falling over.

Fig. 5. Tele-Twister: application of scalable collaborative teleoperation
where teams of online players direct the movements of human players in
real time.

In our version, Tele-Twister, there are two human players
called “twisters”. One twister is dressed in red, the other in
blue, as illustrated in figure 5. Remote participants (”voters”),
download the Java applet and are assigned to one of two teams,
red or blue. In Tele-Twister, random target selection is replaced
by the teams, who view game status using the low framerate
video and vote using the interface to collectively decide on
the targets and compete to win: having their opponent fall
over first.

A typical voting pattern is illustrated in Figure 5(a). Votel
positions for all online voters are updated every second and
displayed at each voter’s browser. Consensus regions are
computed and updated continuously by each browser. voters
are free to change their votel position at any time during the
voting cycle, but when it ends, the majority cluster determines
the next move for the human twisters.

Tele-Twister is thus strategic: the red team chooses targets
that are easy for the red twister and difficult for the blue
twister, and vice versa for the blue team. Tele-Twister en-
courages active collaboration within teams and competition
between teams. In this context, the unsupervised scoring
metric rewards active participation and collaboration (voters
who don’t vote or are outside the majority region at the end
of a voting cycle receive a zero score).

Figure 5(b) shows the board layout, with 16 circles: red,
blue, yellow, and green. Since August 12th, 2003 we have
conducted public ”field tests” on Fridays, from 12-1pm Pacific
Time. These field tests attract 10-25 online participants, who
vote in alternating 30 second voting periods until one twister
falls, ending the round. Typically, each round continues for
10-20 voting periods, so we conduct 4-5 rounds during each
field test. Figure 5(c) and (d) are two snapshots from a typical
round.

Fig. 6. Plot of unsupervised scoring metric from the Sept 26 2003 field test
with two teams of 21 online voters, for five rounds of the Tele-Twister game.
The figure plots average score for members of each team during sequential
voting cycles. Vertical bars indicate the end of a round and which team wins.
A solid vertical line indicates that the blue team won that round and a dashed
vertical line indicates that the red team won.

Figure 6 shows scoring data from the field test on Friday
September 26th, 2003. All players begin the field test with a
score of zero, so average score per team climbs during the
initial voting cycles: the blue team wins the first round after
approx 23 voting cycles.

How do user scores correlate with task performance (win-
ning the round)? Note that in the four subsequent rounds,
the team with the highest average score consistently wins the
round: the red team wins rounds 2,3 and 5 and the blue team
wins round 4. During round 4, members of the red team had
difficulty agreeing on the appropriate next move, reducing the
score of many red voters and in turn the average red team
score. The lack of consensus (ie. ”split votes”) resulted in a
loss during that round.

A team has higher average scores when the team collabo-
rates, reaching consensus faster. This does not always correlate
with success: it can lead to short-term snap decisions that may
appear strong but are strategically weak.

Figure 7 plots individual voter scores from the same field
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Fig. 7. From the same Sept 26 2003 field test, plot of unsupervised scoring
metric for seven individual voters from the Blue team.

test. Note that the score of voter 13 is consistently higher. In
this case voter 13 is a member of our lab who has played the
game during many previous rounds and has developed skill
at picking the next moves. Other players follow his moves,
resulting in a high score.

The Tele-Twister interface is available online at:
http://www.tele-actor.net/tele-twister/

VI. FUTURE WORK

This paper describes an unsupervised scoring metric for
collaborative teleoperation that encourages active participation
and collaboration, and a scalable distributed algorithm for
automatically computing it. To understand how the scoring
metric works with groups of participants and to test software
reliability, we developed a collaborative teleoperation system
based on a sequence of multi-player non-zero sum games em-
bedded inside a sequence of two-player zero sum games. Initial
results suggest that the metric encourages active participation
and correlates reasonably with task performance.
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