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Abstract. Although point contact models are ubiquitous for robot grasp
planning, they do not model the range of wrenches that finite-area soft
contacts provide. This approximation leads to many false negatives. To
reduce these, we propose REACH, a Robust Efficient Area Contact Hy-
pothesis model. We consider its potential benefits and investigate two
potential drawbacks: increased computational complexity and increased
false positives. The REACH model computes the contact profile using
constructive solid geometry intersection and barycentric integration and
estimates the contact’s ability to resist external wrenches (e.g., gravity)
under perturbations in object pose and material properties. We evaluate
the performance of REACH with 2,625 physical grasps of 21 diverse ob-
jects with an ABB YuMi robot. We compare performance of a soft point
contact model, an elliptical area contact model, and a rigid-body dy-
namic simulation model using NVIDIA Flex. The REACH model reduces
false negatives by 17% compared to the point contact model, achieving
72% average recall. The REACH model also compares favorably to full
dynamic simulation in Flex and is two orders of magnitude faster, with
50 ms average computation time. Experimental data and supplementary
material are available at https://sites.google.com/berkeley.edu/reach.

1 Introduction

In nearly all robotic grasping applications, gripper contacts are covered with
compliant material to better resist disturbing wrenches [8, 12]. Compliant grip-
per fingertips also create contact areas that can deform around local surface
geometry [22]. However, the majority of research on grasp planning uses a point
contact model that does not take contact area into account [25]. Point contact
models can produce a high false-negative rate, predicting failure for grasps that
are successful, especially when grasping objects at edges and corners, as shown
in Fig. 1. A high false negative rate may lead to a grasp planner being unable
to find grasps on an object, even when they exist. Additionally, when training
a deep network for grasp planning, a large dataset of true positives and true
negatives are needed to avoid overly confident or conservative predictions [38].
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Fig. 1. Top: An example of a grasp on the corner of a cube. With a point contact model
(left) the grasp cannot resist the gravity wrench since the contacts slip; however, with
the REACH model (right) the grasp can resist the gravity wrench under perturbations
in pose and material properties as the gripper deforms around the object corners to
form a sticking contact. Bottom: Predicted grasp reliability (red, yellow, green → low,
medium, high) under the point contact model (left) and under the REACH model
(right) for a bracket, illustrating that the REACH model is far less conservative. The
REACH model is significantly more accurate in predicting the true outcome of physical
grasp experiments on this bracket.

Reducing the contact area to idealized surfaces [5, 14, 15, 46] or using the Fi-
nite Element Method (FEM) [6, 44, 45] are other approaches for modelling the
interaction between a compliant gripper and objects, but the former does not
model non-parametric surface geometries, while the latter is computationally
expensive.

To address these issues, we propose the REACH model, a novel Robust Effi-
cient Area Contact Hypothesis model for robot grasping that estimates contact
area through the constructive solid geometry intersection between the object
mesh and the compliant volumetric model of each gripper jaw. REACH repre-
sents the pressure distribution using a linear model based on the deformation of
the jaw and decomposes the contact surface into a triangular mesh to compute
the friction constraints for each triangle based on the ellipsoidal limit surface [14].
“Hypothesis” refers to the inherent uncertainty in these constraints for multi-
point frictional contacts. The wrench contributions from all triangles form the
grasp wrench space, which is used to predict grasp reliability (probability of suc-
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cess). As in Dex-Net 1.0 [24], REACH uses Monte-Carlo sampling to evaluate
grasp robustness under perturbations in gripper pose and material properties.

This paper makes two contributions:

1. REACH, a novel and efficient area contact model that considers full six-
dimensional wrenches applied at the contact by modeling frictional con-
straints at each triangle.

2. A labeled dataset from physical experiments with 2,625 grasps of 21 objects
by an ABB YuMi robot with a compliant parallel-jaw gripper, with cross-
validation experiments comparing REACH to point and dynamic contact
models across results from physical experiments.

2 Related Work

There is a substantial literature on contact modeling for robot grasping, with
notable surveys by Kao, Lynch, and Burdick [17], Rimon and Burdick [34], and
Bicchi and Kumar [2].

2.1 Point Contact Models

Point contact models provide constraints on forces and torques applied at the
contact between a point and a surface. A point contact can be modeled as
frictionless point contact, frictional, or soft [2, 37]. A frictionless point contact
can only exert a force along the inward contact normal. A frictional point contact
can additionally exert a tangential force, and a soft point contact also applies a
pure torsional moment about the inward contact normal. The tangential force is
commonly constrained by Coulomb’s Law, and the torsional moment is similarly
constrained, scaling with a torsional friction coefficient [29]. The tangential force
and torsional moment that a soft point contact can exert can also be jointly
constrained by the so-called friction limit surface (FLS) [11, 22, 31], which Howe
et al. approximated with an ellipsoid for computational efficiency [14].

2.2 Area Contact Models

The first area contact models used Hertz’s contact theory [13], which described
the contact profile for two elastic bodies. Xydas et al. extended the model to
include materials that are not linear-elastic [18, 46]. Other compliant contact
models have also been introduced [15, 28]. Barbagli et al. provide an excellent
summary of several of these models, and how well each one approximates the
human finger [1]. However, these models assume a spherical or hemispherical ob-
ject contacting a planar surface, and require finite-element analysis for nontrivial
surfaces [33, 45]. Some work has focused on adapting these models to non-planar
geometries. Ciocarlie et al. applied constraints from the ellipsoidal FLS model
to area contacts by summing over elements in a FEM simulation [6] and by ap-
proximating the contact area with an ellipse and applying Hertzian and Winkler
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pressure distributions [5]. The 2D ellipse is later generalized to quadric surfaces
in [40] to approximate the contact area. Xu et al. [44] analyze a 3D subspace of
6D friction constraints for curved contact area results from soft-finger grasping,
where the contact profile is obtained from a FEM simulation. Ghafoor et al.
applied a different model consisting of circular elastic point contact contours to
find the 6D grasp stiffness matrix, which relates the force applied by the finger
to the 6D wrench applied at the contact [9].

Of these, Ciocarlie et al.’s work is most similar to the work presented here,
but our work precisely determines the area of contact without approximating
the surface. Charusta et al. also find a patch contact by intersecting the gripper
geometry with the object, but only consider spherical gripper pads and do not
consider the pressure distribution formed by the patch contact [4]. In contrast,
we consider arbitrary planar gripper geometries and explicitly model the pressure
distribution created by the patch contact. Sinha and Abel analyze non-planar
contact surfaces through discretization into finite area patches [39], but they
applied their results only to objects with simple geometries (such as cubes and
cylinders) and required a variational approach to solve for a quasi-static equilib-
rium. In contrast, we estimate the contact area without a smooth approximation
of the object surface or FEM simulations. The proposed model also considers the
full 6D wrench applied at the contact, whereas Ciocarlie et al. [5] and Charusta
et al. [4] consider a 4D wrench and Xu et al. [44] study a 3D subspace.

2.3 Grasp Wrench Space Analysis

Our wrench-space analysis extends the analysis presented by Mahler et al. [26,
27] in that we characterize a grasp as successful if the grasp resists the grav-
ity wrench. Previous work has considered many metrics including probability of
force closure and ability to resist any applied disturbing wrenches [7, 35, 43].
Krug et al. perform a complete analysis of wrench-based grasp quality met-
rics [19]. In this work, we develop constraints for each patch contact applied to
the object and solve a quadratic program to determine if the forces applied at
the contacts can resist the gravity wrench applied to the object.

2.4 Grasp Datasets

Bohg et al. provided a survey of the most commonly-used grasp datasets [3].
Large-scale datasets for grasping are commonly created via hand-labeling, such
as Team MIT-Princeton’s dataset for the 2017 Amazon Picking Challenge [47]
and Lenz et al.’s Cornell Grasping Dataset [20]. Other training datasets label
successful robot grasps either in simulation [16] or on a physical system [21,
32]. Mahler et al. proposed a hybrid approach, using soft point contact models
to efficiently generate a labeled dataset of millions of grasps for 3D models in
simulation, and training a network on a labeled dataset of simulated grasps [25,
26, 27]. In contrast, to create our physical dataset, we sample grasps in simulation
and gather ground-truth labels on the physical system.
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3 Problem Statement

We consider the problem of predicting grasp reliability, or probability of grasp
success, based on the ability of the grasp contacts applied by a robot gripper to
resist the gravity wrench. In this paper, we consider a parallel-jaw gripper, but
the model can be applied to grippers with any number of jaws.

3.1 Assumptions

We make the following assumptions:

1. Quasi-static physics (inertial terms are negligible) and Coulomb friction.
2. Objects to be grasped are rigid with known geometry.
3. The gripper has known geometry and two parallel jaws, each covered with a

linear-elastic material whose geometry can be approximated by an extruded
planar polygon.

4. The friction coefficient µ is constant over the contact area.
5. Both gripper jaws make contact simultaneously.
6. The jaw applies a force normal to each triangle’s face in the contact patch.

3.2 Definitions

The state x of the grasping scene consists of the geometric, mass, and frictional
properties describing an object O, as well as the pose of the object TO. The set
of actions are a set of grasps U that are available to a robot with a parallel-jaw
gripper. Each grasp u ∈ U is parametrized by a nominal grasp center p ∈ R3 and
an angle ϕ ∈ S3. The jaws close with closing force fC around the grasp center
and are oriented according to the grasp angle. Success is measured through a
binary reward function R, where R = 1 if the grasp successfully lifts the object
and R = 0 otherwise. To model uncertainty in state, imprecision in robot control
and imperfect knowledge of external wrenches, we define grasp reliability as a
distribution Q(x,u) = P(R |x,u) that describes the probability of success for a
state x and grasp u [26]. We evaluate reliability in simulated environments by
varying object pose, mass, and frictional properties, and by taking Q(x,u) to be

the sample mean of N trials: Q(x,u) = 1
N

∑N
i=1Ri(x,u).

3.3 Objective

Given a nominal state x and grasp u, we seek an accurate, efficiently-computable
estimation of reliability Q(x,u), while optimizing average precision (AP). AP is
defined as the weighted mean of precision values at each recall threshold, with the
weights being the increase in recall from the previous threshold, and measures
area under the precision-recall curve. This metric optimizes binary classification
performance for an imbalanced dataset (e.g., more successes than failures) [36].
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Fig. 2. (a) Under the REACH model, the contact patch is formed via the constructive
solid geometry intersection between the extruded pad polygon and the object mesh. â
indicates the approach vector of the jaw. Redder colors represent more deformation of
the pad at that point and hence higher pressure. (b) The deformation of the gripper
and (c) the triangle frame for a single triangle in the contact patch. The wrenches that
can be applied at each triangle sum to form the total wrench applied to the object in
its frame. (d) The pressure distribution of the patch under the REACH model and (e)
as measured by a Weiss Robotics WTS tactile sensor [41].

4 REACH Model

To efficiently approximate grasp reliability, the REACH model estimates the
contact wrenches a gripper can apply to the object. We first estimate the contact
area, which we decompose into multiple triangles, and the pressure distribution.
The wrenches that can be applied at each triangle are computed individually,
and the sum of each triangle’s wrenches forms the total wrench that the grasp
can apply. Each triangle contributes frictional and normal wrenches, where the
frictional wrenches are constrained with an elliptical FLS model [14, 31].

The wrench set that the contacts can exert in the object frame is given
by Λ = {w ∈ R6 | w = Gα, α ∈ F}, where α ∈ R6n for n triangles, and
G ∈ R6×6n is a set of 6n basis wrenches in the object frame. If each triangle has
m constraints, F ⊆ Rmn is the set of constraints for the grasp. The contacts then
can resist an external wrench w if −w ∈ Λ [19, 26, 31]. In practice, we solve
this system using a quadratic program, which modern solvers can efficiently
find an exact solution for given that the set F is defined by linear equality and
inequality constraints. In this section, we describe the REACH model for efficient
computation of the contact profile and the constraints F .

4.1 Contact Area Computation

We model the object’s geometry as a triangular mesh and define the contact
area as the constructive solid geometry intersection of the extruded polygon of
the jaw with the object. To model deformability of the jaw material, we find the
gripper deformation depth ddef = κfC , where κ is a material constant specific
to the jaw material and fC is the closing force the jaw can apply. If the material
has a physical limit for how much it can deform, we introduce this constraint by
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saturating ddef at this limit. We define the contact distance dcon as the minimum
positive distance before contacting the object and slice the intersection mesh
with planes parallel to the gripper at distances dcon and dcon + ddef along the
approach vector, as shown in Fig. 2. If the resulting surface patch(es) on the
object have a finite non-zero area, then the jaw contacts the object.

We define a frame of reference for the object, where the origin lies at the
center of mass of the object and the orientation depends on the object, and a
frame of reference for each triangle in the contact patch, where the origin lies
at the barycenter of the triangle, the z-axis is along the face normal, and the
x-axis points to the first vertex. Fig. 2 shows these frames for one triangle in a
contact patch. Then, for a deformation function δ : R3 → R that describes the
distance the jaw presses into the object at each point on the contact surface, we
consider a pressure distribution p(r) = kδ(r)(n̂ · â) that scales with deformation
and with the angle between the object surface normal n̂ and approach vector
â. The normalizing constant k is determined by integrating the pressure distri-
bution over the contact area. The pressure distribution pi : R2 → R in the i-th
triangle frame is given by transforming from object frame into the i-th triangle
frame. Note that the pressure distribution in triangle frame varies only over two
coordinates, as the triangle is planar. Fig. 2 shows that this pressure distribution
reasonably models that measured by a Weiss Robotics WTS tactile sensor [41]
for the given contact.

4.2 Wrench Space Constraints

Once we find the contact patch and its pressure distribution, we construct the

ellipsoidal FLS for each triangle. The 6D wrench
[
fxi

fyi fzi τxi
τyi τzi

]T
for the

i-th triangle in its local triangle frame is given in terms of the friction coeffi-

cient µ, the unit instantaneous velocities v̂i =
[
vxi

vyi vzi
]T

, and the pressure
distribution pi(ri) over the triangle area Ai parametrized by coordinates ri [17]:

fti =

[
fxi

fyi

]
= −

∫
Ai

µ

[
vxi

vyi

]
pi(ri) dAi,

fzi =

∫
Ai

pi(ri) dAi,

τxi
= τyi = 0,

τzi = −
∫
Ai

µ‖ri × v̂i‖pi(ri) dAi.

Note that τxi
and τyi are constrained to be zero in the local triangle frame,

but are typically non-zero after transformed into the object frame for the whole
contact patch. The torsional moment and tangent friction force are jointly limited
by a 3D ellipsoidal FLS:

‖fti‖2

(fti,max)2
+
|τzi |2

(τzi,max)2
≤ 1, (4.1)
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where fti,max and τzi,max are the maximal frictional force and torque, which are
determined by maximizing the integral over the set of possible velocities v̂i. Then

the tangential force has maximum magnitude with v̂i =
[
vxi vyi 0

]T
completely

in the tangent plane:

fti =

[
fxi

fyi

]
≤ µ

[
fzivxi

fzivyi

]
,

‖fti‖22 ≤ (µfzi)
2 = (fti,max

)2, with |fzi | ≤ fzi,max,

where fzi,max is the fraction of the closing force fC that is applied normal to the

triangle. The torsional moment is maximized by v̂i =
[
−yi xi 0

]T
/
√
x2i + y2i :

τzi,max
= −

∫
Ai

µ ‖ri × v̂i‖ pi(ri) dAi ≤ µ
∫
Ai

√
x2i + y2i pi(ri) dAi.

Next, we compute the symbolic integrals for fxi,max
, fyi,max

, fzi,max
, and

τzi,max
, so that they can be efficiently computed as a function evaluation at

runtime. We determine the lower bound for τzi,max
, as its constraint integral

can only be numerically integrated. This conservative approximation is used to
limit false positives in grasp planning, and by avoiding numerical integration,
we greatly increase efficiency in grasp prediction.

We start by transforming each integral to barycentric coordinates [42]. Given
a function f(r), with r = (x, y, z) in Cartesian coordinates, to integrate over a
triangle T with vertices t1 = (x1, y1, z1), t2 = (x2, y2, z2), t3 = (x3, y3, z3), and
area A,∫∫

T

f(r) dA = 2A

∫ 1

0

∫ 1−λ2

0

f(λ1t1 + λ2t2 + (1− λ1 − λ2)t3) dλ1dλ2.

Then, we symbolically compute the maximal normal force of the i-th triangle
fzi,max

based on its pressure distribution pi = aixi + biyi + di, where ai, bi are
based on the transform to triangle frame, and di is an offset from the first point
of contact to the barycenter of the i-th triangle:

fzi,max
=

∫
Ai

k(aixi + biyi + di) dAi

=
Aik

3
(ai(xi,1 + xi,2 + xi,3) + bi(yi,1 + yi,2 + yi,3) + 3di).

The lower bound of the maximal torsional moment τzi,max
for the i-th triangle

is computed with:

τzi,max
=

∫
Ai

k(aixi + biyi + d)
√
x2i + y2i dAi

≥ k√
2

(∣∣∣∣∫
Ti

xi(aixi + biyi + d) dAi

∣∣∣∣+

∣∣∣∣∫
Ti

yi(aixi + biyi + d) dAi

∣∣∣∣) .
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The proof of the lower bound τzi,max and complete derivations and expressions
for fzi,max

, τzi,max
can be found in the supplementary material.

Once these per-triangle integrals are complete, we form the final set of con-
straints for each triangle. First, the normalizing constant k is found using the
condition that fC =

∑n
i=1 fzi,max

. This equality follows from the condition that
the force applied must be equivalent to the integral of the pressure distribution
over the contact area [17]. We additionally introduce equality constraints on k
so that the pressure distribution is consistent across triangles. Next, we linearize
the constraint in Equation 4.1 by approximating the ellipsoid with a series of
linear constraints found by sampling j points on the ellipsoid [5]. For our im-
plementation, j = 18, so there are m = 23 constraints for each triangle. In the
experiments below, we use the ten triangles with the largest area for our con-
straints (for a total of 230 constraints per contact), as we empirically found these
accurately describe the contact patch for nearly all objects without sacrificing
prediction accuracy.

5 Experiments

5.1 Physical Experiments Dataset

To evaluate the precision and recall of the REACH model, we collected a set of
2,625 grasps across a set of 21 3D-printed objects (seen in Fig. 3) on a physi-
cal ABB YuMi robot with a compliant parallel-jaw gripper. These objects test
generalization of our method to a diverse set of object geometries. To generate
grasps for each object, we first computed all stable poses with a probability
greater than 1% [10]. Then, in simulation, we placed each object in each sta-
ble pose on a flat workspace and sample parallel-jaw grasps on and around the
object (within a radius equal to the width of the gripper). Grasps are sampled
by choosing a point on the surface of the object and shooting rays along vec-
tors within an angular threshold of the negative surface normal to find a second
point on the surface. Grasps that only contact at one point or are wider than
the maximum gripper width are discarded. Additionally, grasps that fall within
a distance threshold of another grasp are discarded, along with stable poses that
do not have any grasps that can be sampled (for example, the object is too
wide for the gripper in the stable pose). Grasps within the gripper pad width of
the object are sampled by adding uniform noise samples to the generated grasp
centers, resulting in a set of sampled grasps such as those in Fig. 1.

When evaluating grasps on the physical system, a stable pose for the ob-
ject is chosen from its stable pose distribution. A random grasp for the chosen
stable pose is planned in simulation and is executed on the physical system
through a point-cloud registration system built around Super4PCS [30]. The
transformation between the simulated point-cloud and the point-cloud captured
on the physical system is applied to the simulated grasp pose, and grasp suc-
cess is recorded by a human operator. A grasp is successful if the object is
stably lifted (e.g., does not fall from the jaws during lifting). We sample 25
grasps for each object and each sampled grasp is repeated 5 times to measure
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Fig. 3. The 21 objects (top left) used to create the labeled dataset of real-world grasps,
along with the percentage of sampled grasps that succeeded on the physical system for
each object (bottom left). The objects are all 3D printed so that grasps could be indexed
from simulation and were chosen to cover a wide range of geometries and grasp success
rates. An example real-world grasp (right) with our compliant gripper, showing its
ability to deform around complex geometries.

robustness to small errors in registration and actuation. The 21 objects used
and percentage of sampled grasps that succeeded are shown in Fig. 3. The com-
plete dataset of 2625 object and grasp poses with success labels can be found
at https://sites.google.com/berkeley.edu/reach, along with videos of each grasp
trial.

5.2 Benchmark Estimators

In addition to the model proposed here, we also benchmark three other mod-
els; two analytical models used in the literature, and a full rigid-body dynamic
simulation implemented in NVIDIA Flex. Robust versions of each of the analyt-
ical models are also considered, and are calculated as described in Sect. 3.2 by
taking the sample mean of N grasp trials over perturbations in object pose and
frictional properties. Each object mesh contains between 12 and 3400 triangles,
with an average of 1200 triangles.

Soft Point Contact Model The soft point contact model applies a 4D wrench
at the contact point, [fx fy fz τz]

T [37]. The constraints on fx and fy are the
linearized friction cone, determined by friction coefficient µ, and fz is constrained
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Fig. 4. An example grasp on object 1 in the Flex dynamic simulator, with perturbations
applied to each trial. We use a prototype GPU rigid-body global solver based on [23]
to move to the grasp pose (left), close the gripper jaws, and lift (right). Success is
recorded for each trial if the object remains in the gripper’s jaws after lifting.

by the closing force of the gripper. The torque τz applied at the contact is
determined by a separate torsional coefficient of friction γ and the constraint is
given by γfz.

Elliptical Area Contact Model The elliptical contact model is adapted from
Ciocarlie et al. [5]. It is implemented here by first fitting a 2D ellipse to the ex-
tracted surface patch. The Hertztian pressure distribution is assumed to compute
the maximal frictional force and torque; these constraints are solved for exactly
by Ciocarlie et al. and depend only on the closing force of the gripper and the
ellipse axis lengths. In this case, the linearized 3D ellipsoidal limit surface model
for each contact forms the grasp wrench space.

Flex Simulation We use a prototype version of a GPU-based rigid-body global
solver [23] in NVIDIA Flex to run a full dynamic simulation of each grasp in the
physical dataset. The solver uses a preconditioned conjugate residual method
(PCR) to solve an approximated linear system for each outer iteration. We use a
time step of 1/60 sec with 2 sub-steps, 6 outer iterations and 40 PCR iterations
per each outer iteration, with a relaxation factor of 0.75. Each gripper consists
of 720 triangles, 300 for each finger and 120 for the base. Each trial consists of
the gripper moving to the grasp pose, closing the gripper, and attempting to
lift the object. Since the simulator allows for many simultaneous trials, we run
100 trials of each grasp in parallel, with perturbations of the same magnitude as
we use for our robustness score applied to each trial. Fig. 4 shows an example
grasping scene.

5.3 Metrics

Average precision (AP) and average recall (AR) are calculated using the ground-
truth grasp labels and each model’s predictions for the dataset of physical grasps.
Average Precision is defined as the mean of the precision at each recall threshold,
weighted by the difference between thresholds. Thus, AP is a measure of the area
under the precision-recall curve and indicates overall performance of a binary
classifier. AR is inversely related to the false negative rate (grasps predicted to
fail but succeed) and is calculated as the recall averaged across 11 equally-spaced
prediction thresholds for success from 0.0 to 1.0. Since each model has several
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parameters that can be tuned for each object, a cross-validation approach was
used to avoid overfitting the model to the choice of objects. We sampled model
parameters from uniform distributions: U(0.3, 1.5) for the tangential friction co-
efficient, and U(0.01, 1) for the point contact model’s torsional friction coefficient
or U(0.0001, 0.01) for the area contact models’ material constant. We performed
leave-one-out cross-validation with 100 sets of sampled parameters, choosing the
best performing model on the training objects and applying it to the held-out
object. We also measure run time for each model on an Ubuntu 16.04 machine
with a 12-core 3.7 GHz i7-3700k processor and a NVIDIA V100 GPU.

Table 1. Average Precision (AP) and Average Recall (AR) for each model’s predictions
of grasp quality, for the 525 grasps collected on the physical robot. We perform leave-
one-out cross validation, and average the AP and AR on each of the held-out folds. The
non-robust REACH and REACH models achieves an absolute 17% and 11% higher AR
than the non-robust and robust point contact models, respectively, with similar AP.
Adding robustness increases AP and still allows the REACH model to recall grasps
that the other models cannot. Flex outperforms all models in AP, but requires 20x
more computation time.

Model AP AR Run Time (s/grasp)

Point 0.76 0.55 0.006
Point Robust 0.82 0.55 0.040
Elliptical Area 0.73 0.47 0.024
Elliptical Area Robust 0.73 0.47 0.220
Flex Simulation 0.86 0.54 10.300
REACH (non-robust) 0.77 0.72 0.053
REACH 0.82 0.66 0.520

5.4 Discussion

The results in Tab. 1 suggest that the REACH model is able to correctly predict
grasps that are classified as false negatives by the other methods, at the cost of
several more false positive predictions. The non-robust REACH model achieves
an absolute 17% higher AR than the soft point contact model while maintaining
a similar AP. Adding robustness increases AP for both models, but the REACH
model still increases AR by an absolute 11% over the point contact model. Flex
outperforms both the robust soft point contact model and the REACH model
in the AP metric by 4%, but at the cost of a run time that is 20x that of the
REACH model and 250x that of the robust point contact model. Thus, despite
similar AP performance to the robust soft point contact model, the REACH
model shows promise for use in a grasp planner, as it can recall grasps that the
other models are unable to recall.

These results also suggest that robustness can significantly increase average
precision; the AP for both the robust soft point contact model and the REACH
model is 6% and 5% higher than their non-robust counterparts. While these
results are limited to our dataset of plastic 3D printed objects, adding this
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robustness could also help the model generalize to different object masses and
frictional properties.

Additionally, we note that the sampled parameters that best fit our physical
dataset for the REACH model often are unrealistic for the physical gripper that
we use. In particular, the sampled material constant often leads to deformation
depths much larger than the material can actually deform. We hypothesize that
this choice of parameters leads to better performance because more deformation
accounts for more dynamic grasps where the object may rotate slightly into
alignment or where one jaw contacts the object first.

6 Conclusions and Future Work

We introduce REACH, a Robust Efficient Area Contact Hypothesis model that
estimates contact profile and contact wrench constraints by leveraging triangular
mesh models and barycentric integration for computational efficiency to increase
recall over traditional point contact models by 17%. To extend the REACH
model further, we will study remaining false positives and false negative predic-
tions from the REACH model, which mainly stem from dynamic effects, such
as the object initially slipping before being grasped and the potential change of
object pose due to two jaws not in contact simultaneously. Additionally, we will
test our model on a wider range of non-3D-printed objects, which will challenge
the ability of robustness in frictional Furthermore, we observe that the plastic
support behind each gripper jaw slightly cantilevers outward when grasping. We
have begun to model this effect with Bernoulli beam theory.
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