
Learning 2D Surgical Camera Motion From Demonstrations

Jessica J. Ji1, Sanjay Krishnan1, Vatsal Patel1, Danyal Fer2, Ken Goldberg1

Abstract— Automating camera movement during robot-
assisted surgery has the potential to reduce burden on surgeons
and remove the need to manually move the camera. An impor-
tant sub-problem is automatic viewpoint selection, proposing
camera poses that focus on important anatomical features at
the beginning of a task. We use the 6 DoF Stewart Platform
Research Kit (SPRK) to simulate camera movements and study
camera motion in surgical robotics. To provide demonstrations,
we link the platform’s control directly to the da Vinci Research
Kit (dVRK) master control system and allow control of the
platform using the same pedals and tools as a clinical movable
endoscope. We propose a probabilistic model that identifies
image features that “dwell” close to the camera’s focal point
in expert demonstrations. Our experiments consider a surgical
debridement scenario on silicone phantoms with foreign bodies
of varying color and shape. We evaluate the extent to which the
system correctly segments candidate debridement targets (box
accuracy) and correctly ranks those targets (rank accuracy).
For debridement of a single uniquely colored foreign body, the
box accuracy is 80% and the rank accuracy is 100% after
100 training data points. For debridement of multiple foreign
bodies of the same color, the box accuracy is 70.8% and the
rank accuracy is 100% after 100 training data points. For
debridement of foreign bodies with a particular shape, the box
accuracy is 70.5% and the rank accuracy is 90% after 100
training data points. A demonstration video is available at:
https://vimeo.com/260362958

Index Terms— Surgical Robotics; Active Perception; View-
point Selection

I. INTRODUCTION

Camera positioning and movement is an important skill in
manual laparoscopic surgery [1–4], and robot-assisted laparo-
scopic surgery has the potential to facilitate partial automation
of camera control [1, 5–7] to free the surgeon’s hands to
concentrate on manipulating laparoscopic instruments such
as scissors, needle drivers, or electrocautery tools. A critical
sub-problem is automatic viewpoint selection, i.e., suggesting
camera angles and positions that center on important regions
at the beginning of a task. The viewpoint selection problem
complements existing literature on automated surgical camera
movement that focuses on local tracking models, which
center the camera around the positions of the tools or
follow surgeon eye-gaze [6]. We explore learning to identify
features of interest from endoscopic images viewed during
demonstrations performed by expert surgeons to yield a
predictive model that learns features of interest to guide
camera positioning.

We base our learning from demonstration (LfD) approach
on a probabilistic model that identifies anatomical features
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Fig. 1: We construct a debridement task with two colored Ethicon
Endo-Surgery phantom "foreign bodies" placed on a planar silicone
slab mounted on the SPRK. A surgical demonstrator is instructed to
center the camera on the blue foreign body, an example of which is
shown in the bottom two frames. The learning from demonstration
(LfD) method computes scores for each foreign body and learns a
model that captures this preference and synthesizes a viewpoint for
a novel scene.

that “dwell” close to the camera’s focal point during control
by an expert surgeon. We consider stereo planar camera
movements consisting of 2D pans with brightly colored
phantom anatomy to demonstrate this concept. The technique
first coarsely segments an endoscopic image into a set of
candidate bounding boxes. We track an expert surgeon’s
camera movements and score the bounding boxes by how
well they are centered in the camera’s field of view–bounding
boxes closer to the focal point are more relevant than those
that are further away. Using the inverse kinematics of the
movable camera, the bounding box can be converted into a
camera position. For camera trajectories with multiple targets,
a trajectory segmentation model is used to detect points at
which the camera is stationary. This scoring metric provides
a weak, noisy label which can be fed into a robust linear
regression model that predicts the score given features of
the anatomy in the bounding box. In a future procedure, this
regression model can be used to rank a set of candidate
bounding boxes by their relevance. An example output of the
model is illustrated in Figure 1.

Experimentally, we emulate a movable camera with a
physically fixed camera setup and use the 6 DoF SPRK
to translate the entire workspace [8]. Existing surgical robotic
cameras, such as the one used by the Intuitive Surgical’s
da Vinci, are cable-driven and consequently have imprecise
kinematics [9, 10]. The SPRK has a very particular kinematic
chain structure, namely, that the inverse kinematics are precise
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and trivial to compute even if the forward kinematics are
non-linear and challenging to reason about. As a result of this
structure, the platform can be precisely servoed to a position
in the world frame, allowing us to collect clean, consistent
demonstration data. We consider a surgical debridement
scenario on silicone phantoms with training foreign bodies
that vary in color and shape. In each experiment, we categorize
a consistent set of these bodies as important, based on color,
shape, size, or a combination. It is the surgeon’s task to center
the camera over all of the desired foreign bodies. For instance,
an example task is to find all of the blue foreign bodies, or
find all of the circular ones. The surgeon’s demonstrations
actuate the camera to center on those objects.

II. RELATED WORK AND BACKGROUND

One of the seminal projects in robotic laparoscopic camera
control is the Automated Endoscopic System for Optimal
Positioning (AESOP) at the Johns Hopkins Medical Cen-
ter [11]. This system provided the surgeon with both a foot-
pedal camera control interface as well as a voice command
interface. The study concluded that voice commands and
tele-operative interfaces at the time were inaccurate and
increased automation in camera control was desired. Since
then, the community has developed new interfaces such as
the EndoAssist device, which is controlled by surgeon head
movements [12], and has studied software-based camera mo-
tion automation (see surveys [6]). Automatic camera control
has also been studied widely in computer graphics [13–15].
In robotics and automation, it has been studied as a form
of active vision or active perception [16, 17]. We focus on
a specific subproblem of learning viewpoint selection from
expert demonstrations.

A. Surgical Camera Movement

Automation strategies can be broadly taxonomized into two
groups: (1) reactive, where the camera’s motion is triggered by
tool motion, and (2) predictive, where an algorithm anticipates
future surgeon motion and moves the camera accordingly.

Several autonomous camera systems for minimally invasive
surgery have been constructed that use sets of rules to
calculate a camera target position and zoom level. For
example, Eslamian et al. [18] proposed a heuristic for
automated camera movement where the camera tracks the
midpoint of a two-arm surgical robot. There are similar
surgical approaches that reactively move the camera in
response to surgeon’s eye-gaze [19, 20]. Both instrument
tracking and eye-gaze tracking are important primitives in
automated camera movement. However, they neglect longer
horizon planning.

Weede et al. [21] proposed a system that applies a Markov
model to predict surgeon tool movements and center the
camera accordingly on the anticipated end-effector midpoint.
In contrast to prior work, we focus on the viewpoint selection
problem based on anatomical features, not the tool positions.
These viewpoints are learned from demonstrations. To the
best of our knowledge, there is limited work in viewpoint

Fig. 2: A viewpoint is the intersection of the optical axis and the
planar workspace.

selection for endoscopic cameras. The closest work has been
in the context of medical imaging with MRIs [22].

B. Viewpoint Selection

The viewpoint selection problem has been studied in other
research areas [23–27]. Much of the work considers accurate
3D models, or registration, of an object of interest. We
approach the problem with a model-free approach, where
the regions of interest are learned from demonstrations. This
is related to work on Region Proposal Networks (RPN),
proposed by Ren et al. [28], which combines convolutional
features with object detection networks to segment and predict
object bounds. In addition, the problem is very related to
camera placement and sensor placement problems [29–31].
The area is also termed visual attention modeling in the
computer vision community [32]. Our work specifically
focuses on surgical hardware (an endoscopic camera) and a
surgical task (debridement).

III. PROBLEM DEFINITION

Let Ob define a global coordinate frame in SE(3). Let
m define a planar workspace in Ob. We consider an ideal
pinhole camera model. Let ~oa be the optical axis of this
camera, i.e., a ray originating at the lens. The oriented point
at which the optical axis intersects the plane m is denoted by
v ∈Ob. We call v a viewpoint. This corresponds to an ideal
pinhole camera model with no distortions. The geometry of
this relationship is described in Figure 2.

A. Kinematic Assumptions

We assume that the camera has inverse kinematic mappings.
Given a viewpoint v, one can analytically calculate a set of



joint angles to actuate the camera such that the optical axis
intersects the plane at v:

u = f−1(v)

Generally, this kinematic mapping will be redundant since
the points lie in a plane. We assume that there is a consistent
technique to resolve the redundancies.

B. Problem Definition

Given a set of “candidate” viewpoints V = {v1, ...,vk}, we
seek to assign a score to each viewpoint in terms of its value
to a particular task. We learn this scoring function from expert
demonstrations.

A demonstration trajectory is a sequence of 2D planar
motions xi ∈ SE(2) represented as rigid transformations to
the workspace:

d = [ x1, ...,xT ]

In the ideal pinhole camera model, a translation of the
camera corresponds to a translation of the workspace and
a rotation of the camera corresponds to a rotation of the
workspace. We consider a planar debridement task where there
are some true foreign bodies to remove from the phantom
and spurious ones that must be left alone. The goal is to learn
which foreign bodies are indeed candidates for debridement
and automatically synthesize the camera movement to focus
on those bodies. From these demonstrations, we infer a model
πθ : V 7→ [0,1] that ranks a set of candidate viewpoints based
on the likelihood that an expert would have selected it.

IV. PROBABILISTIC VIEWPOINT LEARNING

Given a set of demonstrations, our algorithm fits a model
that ranks candidate viewpoints to optimally match behavior
observed in the expert demonstrations.

A. Region Proposals

First, the segmentation algorithm coarsely segments the
initial image into a set of candidate closed contours in the
image. This segmentation is designed to over-predict bounding
boxes and is implemented with standard OpenCV filters1. We
first generate a set of thresholded images with different HSV
thresholds. On each of these images, we use a Canny edge
detector to identify contours after the filters [33]. A bilateral
filter is used to de-noise the detected contours. All remaining
closed contours are added to a set of candidates, which we
prune for containment and size thresholds.

Each of these bounding boxes defines a candidate viewpoint
vi. The centroid of each contour can be translated into the
base coordinate frame. Known movements of the camera can
be translated to known movements of the centroids under the
ideal pinhole camera model.

1https://opencv.org/

Fig. 3: Three blue and two yellow objects of the same shape and
size are placed on a planar silicone slab mounted on the SPRK
within view of the camera. The example trajectory above progress
from left to right and top to bottom, beginning with the top left
initial view and centering on each blue inclusion. The red arrows
denote the direction of camera movement from the current frame to
the next.

B. Tracking Model

We use this insight to analyze the camera movement
demonstrations along their trajectories (Figure 3). Each
demonstration is a sequence of rigid transformations:

d = [ x1, ...,xT ]

Each of these transformations can be applied to the centroids
to get a trajectory of that contour throughout the demonstra-
tion:

vi = [ x1 · vi, ...,xT · vi ]

For each demonstration and each candidate viewpoint in the
demonstration, we get a 2D spatial trajectory of camera focal
points:

c = [ c1, ...,cT ]

In addition to the spatial trajectories, we also record the clock
time between transformations.

C. Scoring Model

The goal of the scoring model is to quantify the value of
each of the candidate viewpoints. We do so by comparing the
geometric relationship of each trajectory of these viewpoints
to the trajectory of camera focal points c[t]. For a candidate
viewpoint i, let δt be defined as:

δi = ‖vi[t]− c[t ′′]‖2

The instantaneous focusing effort is defined as the ratio
between the displacement from the focal point at some time
t compared to the initial displacement:

γi[t] =
δi[t]
δi[0]

This ratio is greater than 1 when in the current timestep
the candidate viewpoint is further away from the focal point
than it initially was, and less than 1 when the candidate
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viewpoint is closer. The maximal focusing effort is defined
as the minimum ratio over all t:

γ
∗
i = min

t
γi[t]

This notion of focusing effort aims to quantify an inclusion’s
maximum importance or relevance at some point in the
trajectory. To account for scaling differences and noise, the
final scoring model is a negative exponential of this term:

`(c,vi) = e−γ∗i

The exponential term acts as a “notch” filter that greatly
down-weights viewpoints that are not centered.

1) Note About Filtering Noise: For each camera position
we also record dwell time, or the duration of time during
which the camera remains static at a position. From the set of
camera focal points, we filter out all points with dwell times of
less than k = 5 seconds, where k is a tunable parameter. This
filtering greatly reduces the number of spurious or irrelevant
motions in the demonstrations.

D. Predictive Model

Each candidate viewpoint is now scored with a label `(c,vi)
that indicates how well it was centered in the demonstration.
The predictive model attempts to correlate this score with
image properties. In other words, given a new scene, the
model anticipates which candidate viewpoints an expert might
center the camera on.

Each bounding box is featurized by the image patch that
it bounds. We featurize the content in each viewpoint with
color frequency and contour properties fi. Using OpenCV
contour approximation, which can be applied to regular and
irregular shapes, we approximate a contour shape for each
bounding box with ε = 0.005 where ε is a tunable parameter
representing the maximum distance from the true contour
to its approximated contour. We swept over the epsilon
parameters and chose the value that resulted in the closest
visual approximations. Each bounding box is featurized by
its area, perimeter, height-width ratio, and average angle of
its approximated contour shape. We also include features that
count the number of pixels whose color is dominated by red,
blue, and green respectively.

In all of our experiments, we use a robust linear regression
model, also called an elastic-net model8:

πβ = argmin
β

∑
vi∈V

‖β T fi− `(c,vi)‖2
2 +λ‖β‖2 +α‖β‖1

This results in a model π that can score a given bounding box
based on the value anticipated from experts demonstrations.

V. DEMONSTRATION SYSTEM

In this section, we describe the setup we used to collect
demonstrations.

Fig. 4: The SPRK translates the workspace under a fixed endoscope
camera.

A. Fixed Camera Moving Workspace

Instead of moving the camera, we emulate idealized camera
motions by translating the entire workspace with the SPRK [8].
As in Figure 4, the SPRK consists of two platforms one fixed
and one moving. The moving upper platform defines a plane
in m in Ob. Above the platform, we place a fixed endoscope
camera.

We integrated this system with the dVRK. The dVRK is
a development platform provided by Intuitive Surgical to
advance research in teleoperated robotic surgical systems.
It consists of hardware from the first-generation da Vinci
"classic" and open-source electronics and software developed
by WPI and Johns Hopkins University. The robot hardware
consists of two robotic laparoscopic arms, termed Patient
Side Manipulators (PSMs), and the Surgeon Console for
teleoperating with a stereo viewer, two master controllers,
termed "Master Tool Manipulators" (MTMs), and a set of
foot pedals.

In classical da Vinci setups, the MTMs control both arm and
camera movement. The surgeon presses down on a foot pedal
to switch between camera and arm control. This interface is
desirable, since the endoscopic camera is typically mounted
to a standard da Vinci arm. The system calculates the change
in the surgeon’s hand position from some designated start
position and applies the same pose transformation to the
camera lens tip.

B. Masters To SPRK Connection

We emulate this interface with a fixed camera and a moving
SPRK. Pressing the camera foot pedal triggers a message that
activates the moving platform. One of the critical differences
in moving the platform rather than actuating an arm is that
rather than controlling the camera lens tip, we actuate the
platform. The SPRK has a kinematic chain structure such
that the inverse kinematics are trivial to evaluate, but the
forward kinematics are non-linear and challenging to compute.
Accordingly, given the relative changes in hand pose from
the right MTM (Figure 5), we can process these changes into



absolute positions for the SPRK that effect the same delta
on the platform, up to a configurable scaling parameter.

Mirroring classical da Vinci setups, when the camera pedal
is released, streaming of poses to the SPRK is paused, and
the camera viewpoint remains static. The surgeon is free to
re-position the right MTM for ergonomic purposes or use the
arm in other surgical tasks.

We use the procedure below to map relative poses from
the right MTM into absolute SPRK positions. We denote
Ti, j as a pose from frame i to frame j and define the following:

• mw - World frame of the right MTM. Poses for the right
MTM are interpreted with respect to this frame.

• mi - Frame of the initial right MTM pose.
• mc - Frame of the current right MTM pose.
• cr - Frame of the right MTM at most recent camera

pedal release.
• cp - Frame of the right MTM at most recent camera

pedal press.
• sw - World frame of the SPRK. Poses for the platform

are interpreted with respect to this frame.

We use Tmi,cp and Tmi,cr in our pose calculations to ensure
that all MTM pose changes executed while the camera pedal
is released have no effect on the SPRK position. Both Tmi,cp
and Tmi,cr are initialized to the identity transformation. Given
a new right MTM pose Tmw,mc, with every camera pedal press,
we perform the following update:

Tmi,cp← Tmi,cpTcp,mwTmw,cr
Tmw,cp← Tmw,mc

With every camera pedal release, we execute this update:

Tmw,cr← Tmw,mc

For a given new published MTM pose Tmw,mc not associated
with a camera pedal press or release, we find Tsw,mc by
evaluating:

Tsw,mc = Tsw,mwTmw,miTmi,cpTcp,mwTmw,mc

where Tsw,mw is a 180◦ rotation. The resulting pose Tsw,mc
is scaled according to operator preference and comfort and
sent to the SPRK. This formulation is based on our prior
work [34].

C. System Parameters

We characterize the visual field that the SPRK is capable of
supporting. The endoscope camera supports stereo 1920x1080
images–corresponding to a 25 mm x 16 mm field of view.
The range of motion of the SPRK corresponds to 17 mm
in both dimension, effectively tripling the field of view with
movement.

Field of View With and Without SPRK

Field of View (no movement) 448 mm2

Effective Field of View 1386 mm2

Fig. 5: The emulated camera movement system fully integrates with
the da Vinci research kit master manipulators and foot pedal system.

VI. EXPERIMENTS

We evaluate our algorithm on three planar viewpoint
selection tasks in which we learn the characteristics of desired
foreign bodies to debride. In our experiments, we measure
both the error in learning the scoring metric and contextualize
this learning error in terms of hand-labeled ground truth.
We present multiple accuracy metrics due to the inherent
sensitivity of computer vision algorithms to specularity. Due
to the specularity, some single objects can misclassified as two
objects with two bounding boxes, each defining a candidate
viewpoint. Therefore, we look at both the number of candidate
viewpoints ranked properly, even if there are multiple, as well
as the number of candidate viewpoints that correspond to
single objects.
Mean Squared Error: We first measure how well the model
predicts our scoring metric (the maximal focusing effort) from
features of image. This quantifies the extent to which the
learning model can infer relevance purely from the image
features.
Box Accuracy: Bounding box accuracy is measured by
the percentage of foreign objects in a demonstration with
accurate bounding boxes, averaged over the total number
of demonstrations in the test set. An object’s viewpoint is
accurate if the object has one unique bounding box that
encompasses the entire object.
Rank Accuracy: We measure rank accuracy as the percent-
age of demonstrations with the correct relative ranking of
predicted scores among the viewpoints in the workspace. The
relative ranking is critical for performance on real world
tasks. For instance, in a task such as debridement, we would
expect scores of tissue to be removed to be higher than that
of healthy tissue and expect the camera to center on the
higher-scored tissue.

A. Phantom Setups

The learning tasks are inspired by debridement scenarios
on silicone tissue phantoms. A roughly planar silicone slab is
mounted on the SPRK with phantom foreign bodies that
vary in terms of color, size, and shape (Figure 1). The
materials for this experiment are taken from the Ethicon



Fig. 6: Experiment 1 test error on a consistent held-out dataset of
25 candidate objects for varying training set sizes. The figure uses
a statistical re-sampling estimator to illustrate the variance in the
accuracy, where the model is retrained on random subsets of the
data and averaged.

Endo-Surgery Inc. training kit and are standard laparoscopic
training materials. In each experiment, we classify a uniform
set of these phantom objects as important, based on color,
shape, size, or a combination thereof. It is the surgeon’s
task to center the camera over all of the important bodies in
the task. The surgeon’s demonstrations actuate the emulated
movable camera to center on those deemed important.

B. Experiment 1. Viewing One Colored Foreign Body using
Single Camera Movement

In the first experiment, we considered the task of centering
on a single foreign body. We placed one blue and one to two
yellow objects of the same size and shape on the phantom
within the view of the camera (Figure 1). The demonstrator
was instructed to center on the blue object.

We used the following parameters for the regression model:
λ = 0.48,α = 0. We swept over model parameters and
selected the values that achieved the lowest mean squared
error on a held-out randomized set comprising 20% of all
collected observations. The model was trained on a set of
100 candidate viewpoints and tested on a set of 25 candidate
viewpoints. The training and test errors given varying training
set sizes is illustrated in Figure 6. Using the full training set
yields 0.021 training mean squared error and 0.021 test mean
squared error. With respect to hand labeled ground truth, the
system achieved:

Experiment 1: Accuracy

Box Accuracy Rank Accuracy
80% 100%

C. Experiment 2. Viewing Multiple Colored Foreign Bodies
from Camera Movement Trajectory

In the next experiment, we considered an extension of
the previous task to center on multiple blue objects. In this

Fig. 7: Experiment 2 test error on a consistent held-out dataset of
25 candidate objects for varying training set sizes.

experiment, one to four blue and one to four yellow objects
were placed on the phantom (Figure 3). The demonstrator
moved the camera along a trajectory and centered on each
blue object.

We applied the robust linear regression model with λ =
1.33,α = 0. We swept over model parameters and selected
the values that achieved the lowest mean squared error on
a held-out randomized set comprising 20% of all collected
observations. The model was trained on a set of 100 candidate
viewpoints and tested on a held-out set of 25 candidate
viewpoints. The training and test errors given varying training
set sizes is illustrated in Figure 7. Using the full training set
yields 0.016 training mean squared error and 0.017 test mean
squared error. With respect to hand labeled ground truth, the
system achieved:

Experiment 2: Accuracy

Box Accuracy Rank Accuracy
70.8% 100%

D. Experiment 3. Viewing One Circular Foreign Body using
Single Camera Movement

The previous experiments illustrate the technique for select-
ing the foreign body by color. The goal of this experiment was
to use demonstrations to learn a model for scoring candidate
viewpoints containing objects of different configurations. We
placed one circular and one to three rectangular objects of
any color (yellow, blue, or orange) on the phantom within
the view of the camera (Figure 8). The demonstrator was
instructed to center on the circular object.

We applied the robust linear regression model with λ =
0,α = 10−25. We swept over model parameters and selected
the values that achieved the lowest mean squared error on
a held-out randomized set comprising 20% of all collected
observations. The model was trained on a set of 100 candidate
viewpoints and tested on a held-out set of 25 candidate
viewpoints. The training and test errors given varying training



Fig. 8: One circular object is placed on a planar silicone slab among
two rectangular objects and mounted on the SPRK within the view
of the camera.

Fig. 9: Experiment 3 test error on a consistent held-out dataset of
25 candidate objects for varying training set sizes.

set sizes is illustrated in Figure 9. Using the full training set
yields 0.021 training mean squared error and 0.021 test mean
squared error. With respect to hand labeled ground truth, the
system achieved:

Experiment 3: Accuracy

Box Accuracy Rank Accuracy
70.5% 90%

VII. DISCUSSION AND FUTURE WORK

We explored learning from endoscopic images viewed dur-
ing demonstrations performed by experts to yield a predictive
model that suggests camera positions at the beginning of a
procedure. We address limitations and several avenues of
future work to consider.

First, we consider a limitation demonstrated by two failure
modes illustrated in Figure 10. We encountered general
bounding box imprecision when filtering with OpenCV as
well as bounding box and contour approximation errors due
to specularities. For a small subset of configurations, the light
source of the camera, even on the lowest brightness setting,

Fig. 10: Two failure modes encountered during image segmentation.
The left figure depicts general bounding box imprecision when
filtering with OpenCV. The right figure illustrates bounding box and
contour approximation errors as a result of light specularities.

caused one inclusion to appear as two. The split bounding
boxes consequently resulted in erroneous predictions. We
believe that different light sources, more precise filtering
through OpenCV, and the use of region proposal networks
could improve our current segmentation and the model’s
accuracy.

Second, we believe the current featurization limits the
robustness of this learning model. We featurized inclusions
using characteristics such as color, contour approximations,
area, and perimeter. The next step towards generalizing
the model is to leverage deep neural networks for image
featurization as they might better capture more complex
features that are difficult or inefficient to feature engineer.

Third, this work focused on 2D planar camera and object
viewpoints. An important challenge for future work is
extending the algorithm to SE(3) and incorporating 3D views
of the objects themselves. Adding supplementary cameras and
rotating the SPRK can provide the system with the additional
freedom needed to more closely emulate the clincial surgical
robotic camera on the da Vinci.

Our experiments considered a surgical debridement sce-
nario on silicone phantoms with training inclusions that vary
in color and shape, and results suggest that we can learn
an accurate model from relatively noisy data. Identifying
camera viewpoints from demonstrations has applications for
identifying points of interest for initiating other manipulation
tasks such as incision closure or anastomosis in the future.
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