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Abstract— Anatomical structures are rarely static during a
surgical procedure due to breathing, heartbeats, and peristaltic
movements. Inspired by observing an expert surgeon, we
propose an intermittent synchronization with the extrema of
the rhythmic motion (i.e., the lowest velocity windows). We per-
formed 2 experiments: (1) pattern cutting and (2) debridement.
In (1), we found that the intermittent synchronization approach,
while 1.8× slower than tracking motion, is significantly more
robust to noise and control latency, and it reduces the max
cutting error by 2.6× except when motion is along 3 or
more orthogonal axes. In (2), a baseline approach with no
synchronization succeeds in 62% of debridement attempts while
intermittent synchronization achieves an 80% success rate.

I. INTRODUCTION

Robotic Surgical Assistants (RSAs), such as Intuitive
Surgical’s da Vinci, can facilitate precise minimally invasive
surgery [1]. RSAs are currently controlled by surgeons using
pure tele-operation, often in a master-slave configuration.
Operating such robots requires uninterrupted attention, control,
and a fundamental understanding of the surgical system.
Automation of surgical sub-tasks has the potential to reduce
surgeon tedium and fatigue, operating time, and enable
supervised tele-surgery over high-latency networks. Several
recent papers have proposed techniques for introducing
limited autonomy in surgery, although few have addressed
this in a dynamic environment. [2–8].

Virtual simulators are widely used in surgical training to
simulate anatomical motions such as breathing, heart beats,
or peristaltic movements [9–14]. In this paper, we mount a
surgical workspace on a 6 degrees of freedom miniaturized
Stewart platform, allowing the workspace to physically rotate
and translate (“SPRK: A Low-Cost Stewart Platform For
Motion Study In Surgical Robotics” [15]).

Our results suggest that an intermittent synchronization
policy, which targets robot motion around the extrema of
the rhythmic motion, is much more robust than a full
synchronization policy to kinematic uncertainty and control
latency. This is because the minima and maxima of the
rhythmic motions correspond to time points with the lowest
velocities – thereby small errors in control have a lesser effect
than at other times. However, this approach might result in a
slower overall execution time. We used the Stewart platform
in an initial pilot study, where an expert cardiac surgeon,
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Fig. 1: Comparing full and intermittent synchronization for two tasks:
(1) surgical cutting and (2) surgical debridement on a miniaturized
Stewart platform performing rhythmic motions at up to 0.5 Hz
with mounted gauze for cutting and black rice seeds on a silicone
phantom for debridement.

W. Doug Boyd, performed a cutting task under rhythmic
sinusoidal movement at 0.5 Hz. We hypothesized that he
would attempt to fully track the movement of the platform,
i.e., mentally model the motion and compensate for it in real
time. However, he preferred an intermittent synchronization
policy, where he synchronized his actions with the extrema of
the rhythmic motion. This observation was counter-intuitive
as intermittent synchronization is less efficient in terms of
time than fully tracking the movement of the platform.

In this paper, we explore the differences between full and
intermittent synchronization in the context of autonomous
execution on two tasks: (1) surgical cutting, and (2) surgical
debridement (Figure 1). (1) We consider cutting along a line
while the platform translates 10 mm perpendicular to the line
sinusoidally at 0.2 Hz. In our experiments, we constructed
a simplified variant of the Fundamentals of Laparoscopic
Surgery (FLS) cutting task, where we autonomously cut
along a line and translated the platform perpendicular to
the line at 0.2 Hz. The robot had to observe the movement
using computer vision, estimate the frequency and phase,
and execute a cut along the line. In our experiments, we
found that the intermittent synchronization approach, while
1.8× slower, was significantly more robust. The maximum
cutting error (maximum deviation from the desired trajectory)
was reduced by 2.6×. (2) We consider surgical debridement
where foreign bodies are removed from a tissue phantom
that is translating 12.5 mm at 0.5 Hz. The robot had to
observe the movement, estimate the frequency and phase, and
grasp/remove 10 foreign bodies. A baseline approach achieved
a 62% success rate for each removal, while intermittent
synchronization was 80% successful.
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II. RELATED WORK

We use the da Vinci Research Kit (dVRK) [16, 17] as
our RSA, which is a research platform based on Intuitive
Surgical’s da Vinci surgical system [18] and which has been
frequently used in surgical robotics research [3, 4, 7, 19, 20].

A. Robot Assisted Surgery with Periodic Motion

Periodic motion has been studied in robotic surgery, includ-
ing motion estimation of anatomical components [21–25] and
robotic control for motion compensation [26–29]. Much of
this work considers virtual surgical simulators, e.g., Duindam
and Sastry [27], and proposes a full synchronization approach
where the quasi-periodic motion of the anatomy is tracked.
Other works, such as Moustris et al. [29], fully synchronize
human input on real robot systems with stabilized virtual
images, or passively compensate for motion using mounted
devices, such as HeartLander [28]. Our work considers
physical experiments with a physical simulator of periodic
motion, which introduces additional challenges of state
estimation from imperfect visual signals and control latency.
We notice that in this setting an intermittent synchronization
strategy is more reliable for autonomous execution – and is
consistent with our observations of experts.

B. Experimental Automated Subtasks

For both cutting and debridement, we adapted state-of-
the-art results for stationary settings to a new task setting
with rythmic motion. Surgical robotic cutting has been
studied in robotics [6, 7, 13, 30, 31] as well as in computer
graphics and computational geometry [32, 33] with little
to no consideration and compensation of periodic motion.
We constructed a simplified variant of the FLS cutting task,
where we autonomously cut along a line and translated
the platform perpendicular to the line at 0.2 Hz. For this
task, without movement, our baseline achieves state-of-the-
art cutting accuracy with 100% success in 40 trials. This work
seeks to extend prior work to a dynamic setting with periodic
motion. Surgical debridement [34–36] is the process of
removing dead or damaged tissue to allow the remaining part
to heal. Automated surgical debridement was demonstrated
in [7, 37–39] with a static target. As in cutting, our baseline
debridement controller with a static target achieves an 85%
success rate – competitive with the state-of-the-art – and we
extend this controller to the dynamic setting.

III. SYNCHRONIZATION MODES

Next, we formalize the algorithmic problem and present
three control strategies.

A. Problem Statement

We assume a periodic, 1-D, sinusoidal, quasi-static move-
ment of the platform with negligible higher-order dynamical
effects due to motion. The sampling frequency for tracking
is assumed to be always greater than the Nyquist frequency
fN . For the full and intermittent synchronization modes,
the tracking algorithm uses a colored circle marker on the
platform in order to track its motion. Let X = [g1, ...,gk]

denote a sequence of target positions with each gi ∈ SE(3)
describing a point in a global inertial reference frame. Each
target point is modulated by a discrete-time rhythmic motion
m[t] ∈ SE(3) that rotates and translates all of the points with
respect to the global frame:

g(m)
i [t] = m[t]×gi

T = [Tx,Ty,Tz]∈ SE(3) represents a vector of the axial periods
of the motion, defined by min‖T‖1 where for each axis:

∃T ∈ N : ∀t m[t +T ] = m[t],

and the amplitude is defined as the maximum translational
motion due to m[t]:

α = max
t

√
m[t].T 2

x +m[t].T 2
y +m[t].T 2

z

We assume the robot has a sequence of positional targets and
takes decisions of the form (u,τ) where u∈ SE(3) represents
positional targets in the global coordinate frame and τ is the
time at which the movement is completed. The robot takes
k such decisions U = [(u1,τ1), ...,(uk,τk)] corresponding to
attempted movements to the target points. The error is defined
by the cumulative error over all decisions:

ε =

k∑
i=1

‖g(m)
i [τ]−ui‖

Given X and a position controller, we consider designing a
control policy to generate U when m[t] is unknown.

B. Three Control Modes

Now, we describe three approaches to synthesizing U .
1) No Synchronization (Open Loop): The baseline ap-

proach is an open-loop control strategy that ignores motion
from the Stewart platform. This is a decision sequence U
that is independent of time:

U = [(g1, ·), ...,(gk, ·)]

We call this approach no synchronization as it ignores the
time at which the the command will terminate.

2) Full Synchronization (Full Tracking): With this method,
we consider translating or rotating the cutting arm to compen-
sate for the motion. The natural first choice of a controller
is a tracking controller – one that models the motion of the
platform and tries to exactly compensate for it. We consider
motion estimation, a two-step process where the system first
learns a motion model and then uses that motion model to
predict a translational offset.

First, we track a fixed point r on the platform for an
observation period Tobs� T and a tracking frequency faster
than fN = 1

2T . This involves collecting tuples (r′,r), where
r′ = m[t]× r. We perform this tracking with a standard
computer vision algorithm and the system tracks the motion
of the Stewart platform at 15 fps for 1 minute. The algorithm
segments a colored circle marker with standard OpenCV
circle detection on the platform with an endoscopic stereo
camera and registers the stereo frame to a pose in a fixed
global coordinate frame.



We convert the positions and orientations into x,y,z and
Euler angles y, p,y that represent the SE(3) pose of the
platform. Then, in each dimension (independently), we fit a
1-D sine curve:

C[t] = α · sin(ω(t +φ))

At any point in time, we correct the robot’s commanded
motion in each dimension with these offsets:

ui[τ] = gi−C[τ].

This is a 1-D approximation to the problem, as modeling
rotations and translations in the full SE(3) space can be very
challenging. The tracking controller is an efficient solution
and has been widely applied in prior work [26–29]. However,
it is quite hard to implement it in a physical setup. This
requires precise estimation of ω,φ from data. Furthermore, it
assumes that commands can be sent with predictable latency
to the robot.

We find that in 10 experimental trials, the estimated
frequency has a relative root-mean-square error (RMSE) of
3% in estimating the period due to kinematic variation in
the platform and noise in the images. Furthermore, the phase
has an RMSE of 0.22 seconds due to the frame rate of the
camera and noise in the images. If we assume that these errors
compound at the worst possible time in the trajectory, namely,
when dC

dt is at a maximum, then this noise alone could result
in ≈ 1 mm of RMSE because the errors compound for t when
argmax

t
| dC

dt |. Furthermore, we found that the total execution

time varied by 0.576 seconds in latency on any particular cut.
This makes it challenging to time the DVRK to a rhythmic
motion. If this error occurred when dC

dt is maximized, this
would result in an additional > 3 mm of error.

3) Intermittent Synchronization: As before, this is a two-
step process where first we learn a motion model by fitting
a sinusoid to tracking data. Then, instead of correcting for
the motion at any point of time, as was the procedure of the
full synchronization controller, we synchronize the period
of the robot with the motion of the platform. That is, we
move the robot only so that it reaches the target position
around the estimated minima or maxima of the sinusoid.
As in control mode 2), we fit a sinusoid for each of the 6
degrees of freedom. Then, we identify the “dominant” degree
of freedom, i.e., the one with the largest amplitude α . For
this degree of freedom, we identify the first maximum or
minimum and generate a sequence of times [s1, ...,sk], based
on the inferred frequency at which that optimum will occur
in the future. We synchronize our positional commands with
these times:

ui[si] = gi−C[si].

While this controller is sub-optimal in time, we hypothesize
that it is more robust to estimation and control errors. For a
sinusoid, the change in position is smallest around the optima
dC
dt ≈ 0. In this window, the uncertainty affects the motion the
least. This basic idea applies more generally for any smooth
continuous disturbance function. For any function, dC

dt ≈ 0

Fig. 2: Expert human surgeon cutting data from one trial period of
experiment 1. Results show the distance cut over time along the
gauze (12 cm) for the platform with (1a) no motion, (1b) lateral
movement, (1c) rotational movement.

around the optima. The second derivative around the optima
( d2C

d2t ) can be used to estimate the window width.

IV. RESULTS: EXPERT SURGEON DEMONSTRATIONS

Observations of a real surgeon motivated the design of
the intermittent synchronization controller. In June 2016, co-
author and expert cardiac surgeon Dr. W. Douglas Boyd
performed an FLS task (pattern cutting) on the Stewart
platform. We recorded trajectory data from these tasks at
90 measurements per second. This data consisted of the
end-effector pose of each of the two DVRK arms and the
corresponding video from the endoscope.

A. Experiment and Analysis

In experiment 1, Dr. Boyd cut along a 12 cm line under
three types of motion: (1a) no movement, (1b) 0.51 cm,
0.5 Hz sinusoidal lateral movement, and (1c) 10o, 0.5 Hz
rotational movement. We hypothesized that the surgeon would
apply some form of predictive control and try to compensate
for the motion by anticipating where the platform would
be. After running the experiment, we noticed that Dr. Boyd
did not track the platform in his control strategy. Instead,
he timed the period of the platform’s movement, cutting at
the lowest velocity times, i.e., minima and maxima. This
behavior is evident in trajectories with both the rotational and
translational motions but is most pronounced in the rotational
motions (Figure 2). The plateaus seen in the data correspond
to the extrema. There was no appreciable reduction in cutting
accuracy when Dr. Boyd cut on the moving platform.

Figure 2 plots the distance cut along the line as a function
of time. Dr. Boyd completed the baseline task (1a) without any
movement in 67 seconds. With lateral movement (1b) the task
was completed in 139 seconds. For the rotational movement
(1c) the task was completed in 164 seconds. Waiting for these
low-velocity intervals resulted in nearly a 3× and more than
a 2× increase in task completion time with the rotational and
translational movements, respectively.

V. EXPERIMENTS: CUTTING

We explore the differences between full and intermittent
synchronization in the context of autonomous execution on
two tasks: (1) surgical cutting, and (2) surgical debridement.
First, we overview our results on (1).



TABLE I: 50 mm line gauze cutting experiments with 25 mm lateral movements at 0.2 Hz. We found that the intermittent synchronization
approach, while 1.8× slower, was significantly more robust reducing the max cutting error by 2.6× and was successful in all four trials.

Trial 1 Trial 2 Trial 3 Trial 4
Controller Finish Err (mm) Time Finish Err (mm) Time Finish Err (mm) Time Finish Err (mm) Time
No Sync No N/A 104.51 No N/A 100.78 No N/A 92.42 No N/A 91.54
Full Sync Yes 5.72 103.35 No N/A 102.21 No N/A 97.56 Yes 2.53 96.45
Int. Sync Yes 2.70 206.71 Yes 1.52 181.44 Yes 1.76 163.35 Yes 1.12 169.39

A. Single-Axis Motion

We illustrate 12 trials of cutting under 25 mm, 0.2 Hz
sinusoidal motion in one degree of freedom (i.e., single axis).
In the first set of experiments, we evaluated the three control
modes for accuracy and reliability. For each controller, we
ran 4 trials of cutting a 50 mm straight line (2 mm thick)
in standard surgical gauze. We took a conservative approach
for determining failure of the control policy. If, during the
cutting process, the scissors disengaged from the gauze (either
above or below), then the trial was marked as a failure. We
measured the maximum error in cutting as the maximum
displacement outside of the 2 mm line.

The no synchronization approach failed in all 4 trials (Table
I). The full synchronization approach succeeded 2 out of the
4 times, but incurred a relatively high cutting error. The
intermittent synchronization approach, while 1.8× slower
than full synchronization, was successful in all four trials. It
was also significantly more robust as it reduced the maximum
cutting error by 2.6×.

B. Single-Axis: Increased Frequency

Next, we performed intermittent frequency cutting exper-
iments over a range of frequencies in platform movement
to test for control algorithm uncertainty. We defined the
sinusoidal amplitude to be 5 mm and varied the frequency
from 0 Hz to 0.3 Hz, which was the highest frequency
we could cut at before failure, and measured the error. We
found that for frequencies less than 0.3 Hz the error was
relatively low (Figure 3, where each data point represents
a single trial). As the frequencies got higher, it became
harder to compensate for the motion, and the variability in
control latency made it challenging to exactly time even the
intermittent synchronizations. For example, the error jumps
by more than 2× between 0.25 Hz and 0.3 Hz (most trials
fail for 0.35 Hz motion).

Fig. 3: For single-axis motion, the errors are relatively low until a
frequency of 0.3 Hz.

C. Single-Axis: Alternate Materials

In the next set of experiments, we considered the same
scenario but with alternative cutting materials to understand
how material properties could affect the control technique.
We considered a silicone tissue phantom to model skin and
a nylon sheet to model tougher connective tissue.

Over the 10 trials run on the silicone phantoms, 7 trials
had an error of 3 mm or less (Table II). It should be noted
that one trial produced an error during cutting so the trial
terminated without completion.

We also repeated the same experiment on 10 nylon sheets
(Table II). The texture of nylon consists of parallel grains; the
cutting trajectories were drawn to go with the grain. All of
the trials were successful and 8 out of 10 trials had an error
of 3 mm or less. We attribute the larger cutting deviation
errors for both sets of trials to frequency estimation errors.

Overall, we found that the material properties (gauze
vs. silicone vs. nylon) did not affect the error as much as
the estimation errors. In future work, we hope to explore
more sophisticated techniques to register the workspace and
estimate its movement.

TABLE II: Results from 10 silicone tissue phantom and 10 nylon
sheet cutting tests. Out of the 20 cutting trials for the two materials,
only one trial terminated without completion.

Silicone Tissue Phantom Nylon Sheet

Finish Trial
Err (mm)

Estim
Freq (Hz) Finish Trial

Err (mm)
Estim

Freq (Hz)
Yes 3 0.080 Yes 2 0.078
Yes 6 0.075 Yes 1 0.075
Yes 1 0.080 Yes 3 0.075
No N/A 0.075 Yes 5 0.080
Yes 2 0.079 Yes 0 0.078
Yes 2 0.079 Yes 4 0.079
Yes 1 0.079 Yes 0 0.077
Yes 4 0.077 Yes 1 0.079
Yes 2 0.050 Yes 2 0.079
Yes 2 0.076 Yes 3 0.078

D. Multi-Axis Motions

We next characterize the performance of intermittent
synchronization on multi-axis periodic motions. This means
that the periodic motion occurs in six degrees of freedom at
the same frequency and phase but with different amplitudes.
We compare the following motion modes: No Motion, Motion
along X only (which translates orthogonally to the cutting
line), 3D Translation, and 6D Translation and Rotation. The
motions along X only were sinusoidal with a 2.5 cm amplitude
and a frequency of 0.2 Hz. For the 3D and 6D translations, we
generated amplitudes in each of the translation dimensions
where the total norm of the amplitudes was equal to the
amplitude we used for motion along X only. Additionally,



TABLE III: Results from 5 trials for each motion mode showing
the average deviation from cutting line.

Motion Mode Error (mm)
No Motion 0.51 +/- 0.84
X Only 1.66 +/- 1.04
3D Translation 3.91 +/- 3.01
6D Trans. and Rot. 4.41 +/- 2.97

for 6D translation and rotation, we generated amplitudes in
each of the rotational dimensions where the total norm of
the amplitudes was 15◦. The average deviations of a cut
from the 2 mm marked line over 5 trials for each with the 1
standard deviation error are listed in Table III. The results
show that performance degrades with periodic motions that
rotate and translate in all of SE(3), and that the intermittent
synchronization is best suited for rhythmic translations in a
single dominant direction.

VI. EXPERIMENTS: DEBRIDEMENT TASK

Next, we consider surgical debridement where foreign
bodies are removed from a tissue phantom that is moving
with a 12.5 mm amplitude at 0.5 Hz along a single axis. The
robot had to observe the movement, estimate the frequency
and phase, and grasp/remove 10 inclusions. The inclusions
were black rice seeds that were 5 mm along their longest
axis and 2 mm along the two other axes. We used surgical
grippers with a 7 mm gripper throw. A computer vision
system observes the foreign bodies on a silicone phantom
and segments the seeds using a standard contour detector.
Then, each seed is registered to the global coordinate frame.
Chessboard experiments suggest an inherent error of 2.25 mm
in the registration system alone. The robot then controls to
the center of mass of the seed and then positions the gripper
orthogonal to the long axis. Seeds were placed in random
positions and orientations on the surface.

Unsuccessful grasps are unavoidable due to perceptual
mistakes and registration/kinematic uncertainty. The task
allows retrials and we give the robot a maximum of 20
attempted grasps to clear 10 inclusions. We compared using
intermittent synchronization to a baseline approach of no
synchronization on 10 trials over 10 inclusions (Table IV).
The baseline approach achieves a 62% success rate for each
removal, while intermittent synchronization achieves 80%
success. The intermittent synchronization runs at an average
speed of 7.2 grasps a minute while the baseline runs at 10.1
grasps a minute.

TABLE IV: Results from 10 debridement trials with no synchro-
nization (baseline) and with intermittent synchronization each.

No Synchronization Intermittent Synchronization
Finish Attempts Successes Finish Attempts Successes

No 20 9 Yes 16 10
Yes 16 10 Yes 13 10
Yes 10 10 Yes 10 10
Yes 15 10 Yes 10 10
No 20 8 Yes 13 10
Yes 19 10 Yes 10 10
Yes 14 10 Yes 11 10
Yes 13 10 Yes 10 10
Yes 13 10 Yes 10 10
Yes 12 10 No 20 9

VII. CONCLUSIONS

In this paper, we explored 3 control modes for automated
surgical subtasks in a dynamic environment using a Stewart
platform. We analyzed the results of an expert cardiac surgeon
cutting gauze on the Stewart platform and extrapolated an
intermittent synchronization control strategy, which favored
cutting along a trajectory at windows of low velocity. In our
experiments, we found that the intermittent synchronization
approach, while slower, was significantly more robust.
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