
Comparing Human-Centric and Robot-Centric
Sampling for Robot Deep Learning from Demonstrations

Michael Laskey1, Caleb Chuck1, Jonathan Lee1, Jeffrey Mahler1,
Sanjay Krishnan1, Kevin Jamieson1, Anca Dragan1, Ken Goldberg1,2

Abstract— Motivated by recent advances in Deep Learning
for robot control, this paper considers two learning algo-
rithms in terms of how they acquire demonstrations from
fallible human supervisors. Human-Centric (HC) sampling is
a standard supervised learning algorithm, where a human
supervisor demonstrates the task by teleoperating the robot
to provide trajectories consisting of state-control pairs. Robot-
Centric (RC) sampling is an increasingly popular alternative
used in algorithms such as DAgger, where a human supervisor
observes the robot execute a learned policy and provides
corrective control labels for each state visited. We suggest RC
sampling can be challenging for human supervisors and prone
to mislabeling. RC sampling can also induce error in policy
performance because it repeatedly visits areas of the state space
that are harder to learn. Although policies learned with RC
sampling can be superior to HC sampling for standard learning
models such as linear SVMs, policies learned with HC sampling
may be comparable to RC when applied to expressive learning
models such as deep learning and hyper-parametric decision
trees, which can achieve very low error provided there is enough
data. We compare HC and RC using a grid world environment
and a physical robot singulation task. In the latter the input
is a binary image of objects on a planar worksurface and the
policy generates a motion in the gripper to separate one object
from the rest. We observe in simulation that for linear SVMs,
policies learned with RC outperformed those learned with HC
but that using deep models this advantage disappears. We also
find that with RC, the corrective control labels provided by
humans can be highly inconsistent. We prove there exists a
class of examples in which at the limit, HC is guaranteed to
converge to an optimal policy while RC may fail to converge.
These results suggest a form of HC sampling may be preferable
for highly-expressive learning models and human supervisors.

I. INTRODUCTION

Learning from Demonstrations (LfD) is a well-established
approach where a robot learns a policy from example
trajectories provided by a fallible human supervisor [12],
[4], [16]. In principle, learning a state-feedback policy is a
supervised learning problem: regression from observed states
to observed controls from the set of example trajectories.
However, if the robot cannot exactly replicate the policy of
the supervisor, such as due to modeling errors or insufficient
data the training error achieved on the example trajectories
may not be indicative of the actual execution error when
using the policy since the robot could visit a very different
distribution of states. Algorithms such as DAgger have been
proposed to address this problem: after an initial policy is
learned, the supervisor observes the robot executing a learned

1 Department of Electrical Engineering and Computer Sciences;
{mdlaskey, calebchuck, jonathan lee, jmahler,sanjaykrishnan, ,
anca}@berkeley.edu

2 Department of Industrial Engineering and Operations Research; gold-
berg@berkeley.edu

1−2 University of California, Berkeley; Berkeley, CA 94720, USA

Human-Centric Robot-Centric

Fig. 1: HC and RC trajectories used to learn a robot singulation task: top
view of 4 objects on a planar worksurface. Left: In HC, 10 trajectories where
a human demonstrates the task by tele-operating a 2-DOF robot to separate
one object from a connected set of objects. Right: In RC, after initial training,
10 trajectories of the highly-suboptimal robot policy are executed and a
human provides corrective control labels for each. Note that many of the
RC trajectories spend considerable time in areas of the workspace that will
not be useful after the task is learned.

policy and retro-actively provides corrective control labels
for each state visited.

A recent trend in Machine Learning is to use more
expressive models such Deep Neural Networks and Decision
Trees [14]. Given enough training data, such models can
represent highly complex feedback policies and may help
alleviate the discrepancy between training and execution error.
This paper studies the relative merits of DAgger-like methods
incorporating a human supervisor, and in the context of model
expressiveness.

We consider two classes of learning algorithms that differ
in how they acquire demonstrations. Human-Centric (HC)
sampling is the standard supervised learning algorithm, where
a human supervisor demonstrates the task by tele-operating
the robot to provide trajectories consisting of state-action
pairs [4]. Robot-Centric (RC) sampling is an increasingly
popular strategy used in algorithms such as DAgger, where
a human supervisor observes the robot executing a learned
policy and retro-actively provides corrective control labels
for each state visited [17], [19], [20]. The intuition behind
this is to provide examples to the robot in states it is likely
to visit.

While RC methods have significant advantages, they can
come at a cost for the human supervisor. In many RC methods,
a human retroactively provides corrective feedback to the
robot without observing the effect of their suggested control.
This can require additional cognitive effort on the human
supervisor who must predict how the world behaves without
observing the outcome of their control.

A second cost of RC sampling is that it collects labels on
states that occur due to previous errors. These states may
require complex corrective actions that do not occur when the
supervisor manually performs the task. For example, consider

the task of singulating (i.e. separate) an object from a set of
objects on a table (Fig. 1). Demonstrations involve moving
forward and side to side to push obstacles out of the way.
However, if the robot makes errors and ends up in a failure
state (Fig. 1(right)), then more complex maneuvers will be
required. One potential outcome of this effect is the robots
policy could incur larger learning error and fail to converge
to the supervisor‘s policy.

The key question is whether the benefits of RC outweigh
these practical challenges, especially if the robots policy is an
expressive model that can significantly reduce training error.
First, we show in simulated examples that when the model
is highly expressive, HC and RC are essentially at parity.
By varying the expressiveness of the robots policy, we find
that on 100 randomly generated grid world environments the
performance gap between the two methods diminishes as the
expressiveness is increased. Next, using a point mass control
example, we find that RC sampling can fail to converge in
cases when HC converges.

Finally, we illustrate the human factors challenge of
implementing RC with a 10 person pilot study. In this
experiment, each human used RC and HC sampling to
train a Zymark robot to singulate an object. We observed a
statistically significant gap in the average performance of the
policies trained by the two approaches. For 60 trajectories, RC
had a success rate of 40% compared with 60%, for HC. Our
post analysis suggests participants had difficulty providing
the retroactive feedback needed for RC sampling.

We conclude the paper with an initial theoretical analysis
that attempts to explain our findings. First, we illustrate a
counter-example wherein as the number of demonstrations
increases, HC converges to an optimum with probability 1,
while for the same model, RC has a non-zero probability of
converging to a suboptimal solution. We emphasize that this
result is not a contradiction of prior theory [19] as RC is
only theoretically guaranteed in terms of hindsight regret.

II. RELATED WORK

Below we summarize related work in HC and RC LfD and
their theoretical insights.
HC Pormeleau et al. used HC to train a neural network to
drive a car on the highway via demonstrations provided by
a supervisor. To reduce the number of examples needed to
perform a task, they synthetically generated images of the
road and control examples [16]. A similar approach was used
by Dilmann et al. to teach a robot to perform peg-in-hole
insertion using a neural network controller [7]. A survey of
HC LfD techniques can be found here [4].

Ross et al. examined HC and derived that the error in the
worst case from this approach can go quadratic in the time
horizon, T [17]. The intuition behind this analysis is that
if the distribution induced by the robot’s policy is different
from the supervisor’s, the robot could incur the maximum
error. Expressive policies can help manage this term, T , by
achieving very low training error.
RC RC has been used in numerous robotic examples,
including flying a quadcopter through a forest where the state
space is image data taken from an onboard sensor [20]. Other
successful examples include teaching a robotic wheelchair to
navigate to target positions [11], teaching a robot to follow

verbal instructions to navigate across an office building [8]
and teaching a robot to grasp in clutter [12].

Ross et al. [19] analyzed RC sampling as online optimiza-
tion. They propose DAgger, an RC sampling algorithm, and
show that the error for the robots policy is linear in T for
strongly convex losses (e.g. regularized linear or kernelized
regression). However, the error also depends on the expected
loss on the data collected during RC, which may be high due
to observing complex recovery behaviors. We analyze this
effect and show how it can prevent RC from converging to
the supervisor’s policy in Section V-A.

Levine et al. identified that the RC sampling can force
the robot into states that are harder to learn and proposed
weighting the samples to correct for this. They also proposed
forcing the supervisor to guide the robots policy to better
regions of the state space [15]. This approach is used for
an algorithmic supervisor and assumes the supervisor can
both be modified and the noise distribution is known. Guided
Policy Search also assumes low dimensional state space,
where dynamics are known or can be reasonably estimated.
We are interested in maintaining the original assumption of
Ross et al. [19], in which there is an unknown supervisor
whose demonstrations cannot be modified and potentially high
dimensional image state spaces. Finally, He et al. proposed
changing the supervisors example to be easier to learn for
the robots policy [10]. We are interested in examining how
changing the robots policy expressiveness can change relative
performance of RC and HC.

LfD Interfaces: Standard techniques for providing demon-
strations to a robot are teleoperation, kinesthetic and waypoint
specification [2], [3], [4]. Kinesthetic teaching is defined as
moving the robot body via a human exerting force on the
robot itself. Teleoperation uses an interface such as a joystick
or video game controller to control the position of the robot
end effector. Waypoint specification, or Keyframes, has a
human select positions in the space the robot needs to visit.
These methods are forms of HC sampling because the human
guides the robot through the task. We look specifically at
teleoperation and compare it to RC’s form of retroactive
feedback.

III. PROBLEM STATEMENT AND BACKGROUND

The objective of LfD is to learn a policy that matches that
of the supervisor on a specified task that demonstrations are
collected on.
Modeling Choices and Assumptions: We model the system
dynamics as Markovian, stochastic, and stationary. Stationary
dynamics occur when, given a state and a control, the
probability of the next state does not change over time.

We model the initial state as sampled from a distribution
over the state space. We assume a known state space and set
of controls. We also assume access to a robot or simulator,
such that we can sample from the state sequences induced
by a sequence of controls. Lastly, we assume access to a
supervisor who can, given a state, provide a control signal
label. We additionally assume the supervisor can be noisy.
Policies and State Densities. Following conventions from
control theory, we denote by X the set consisting of observ-
able states for a robot task, such as images from a camera, or
robot joint angles and object poses in the environment. We

furthermore consider a set U of allowable control inputs for
the robot, which can be discrete or continuous. We model
dynamics as Markovian, such that the probability of state
xt+1 ∈ X can be determined from the previous state xt ∈ X
and control input ut ∈ U :

p(xt+1|ut,xt, . . . ,u0,x0) = p(xt+1|ut,xt)

We assume a probability density over initial states p(x0). The
environment of a task is thus defined as a specific instance
of a control and state space, initial state distribution, and
dynamics.

Given a time horizon T ∈ N, a trajectory τ is a finite
sequence of T + 1 pairs of states visited and corresponding
control inputs at these states, τ = ((x0,u0),, (xT ,uT)),
where xt ∈ X and ut ∈ U for t ∈ {0, . . . , T}.

A policy is a measurable function π : X → U from
states to control inputs. We consider policies πθ : X → U
parametrized by some θ ∈ Θ. Under our assumptions, any
such policy πθ induces a probability density over the set of
trajectories of length T + 1:

p(τ |θ) = p(x0)

T−1∏
i=0

p(xt+1|ut,xt)p(ut|xt, θ)

While we do not assume knowledge of the distributions
corresponding to: p(xt+1|xt,ut), p(x0) or p(xt|θ), we
assume that we have a stochastic real robot or a simulator
such that for any state xt and control ut, we can observe
a sample xt+1 from the density p(xt+1|ut,xt). Therefore,
when ‘rolling out’ trajectories under a policy πθ, we utilize
the robot or a simulator to sample the resulting stochastic
trajectories rather than estimating p(τ |θ) itself.
Objective: We assume access to a supervisor, πθ∗ , where θ∗
may not be contained in Θ. A supervisor is chosen that can
achieve a desired level of performance on the task.

We measure the difference between controls using a
surrogate loss l : U × U → G [19], [17], where G ⊂ R+.
The surrogate loss can be either an indicator function as
in classification or a continuous measure on the sufficient
statistics of p(u|x, θ). We measure total loss along a trajectory
with respect to the supervisor’s policy πθ∗ by J(θ, τ) =∑T

t=1 l(πθ(xt), πθ∗(xt)).
The obective is to minimize the expected surrogate loss

on the distribution of states of the robot:

argmin
θ

Ep(τ |θ)J(θ, τ). (1)

The above objective is challenging to solve because of
the coupling between the surrogate loss and the distribution
the states the robot is likely to visit. Thus, two classes of
algorithms have been proposed (HC and RC).
HC In HC, the supervisor provides the robot a set of N
demonstration trajectories {τ1, ..., τN} sampled from p(τ |θ∗).
This induces a training data set D of all state-control input
pairs from the demonstrated trajectories. The goal is to find
the θN that minimizes the empirical risk, or sample estimate
of the expectation.

θN = argmin
θ

N∑
i=1

J(θ, τi). (2)

RC Due to sample approximation and learning error, one
potential issue with RC sampling is that θN differs from θ∗.
Therefore it is possible that new states will be visited under
θN that would never have been visited under θ∗. To account
for this, prior work has proposed iterative solutions [19] that
attempt to solve this problem by aggregating data on the state
distribution induced by the current robot’s policy.

Instead of minimizing the surrogate loss in Eq. 2, LfD with
RC sampling [19], [10] attempts to approximate the state
distribution the final policy will converge to and minimize
the surrogate loss on this distribution. One popular RC LFD
algorithm is DAgger [19], which iterates two steps:

1) Step 1: The first step of any iteration k is to compute a
θk that minimizes surrogate loss on the current dataset Dk =
{(xi, ui)|i ∈ {1, . . . , N}} of demonstrated state-control pairs
(initially just the set D of initial trajectory demonstrations):

θk = arg min
θ

N∑
i=1

T∑
t=1

l(πθ(xi,t),ui,t). (3)

Note that equal weight is given to each example regardless
of how likely it is under the current policy.

2) Step 2: In the second step of iteration k, DAgger rolls
out the current policy, πθk , to sample states that are likely
under p(τ |θk). For every state visited, DAgger requests the
supervisor to provide the appropriate control/label. Formally,
for a given sampled trajectory τ = (x0,u0, ...,xT ,uT), the
supervisor provides labels ũt, where ũt ∼ π̃(xt) + ε, where
ε is a zero mean noise term, for t ∈ {0, . . . , T}. The states
and labeled controls are then aggregated into the next data
set of demonstrations Dk+1:

Dk+1 = Dk ∪ {(xt, ũt)|t ∈ {0, . . . , T}}

Steps 1 and 2 are repeated for K iterations or until the robot
has achieved sufficient performance on the task.1

IV. EMPIRICAL ANALYSIS

We first provide an empirical comparison of HC and RC
LfD. We start with experiments in a Grid World environment,
which enable us to vary the robot’s policy class over a large
number of randomly generated environments. Then, we use a
linear dynamical system to exemplify a potential limitation of
RC to match the supervisors performance when it must learn
complex recovery actions. Finally, we compare HC and RC
on a real task. We perform a pilot study with 10 participants,
who try to teach a robot how to singulate, or separate an
object from clutter. We used DAgger as the example of an
RC method in these experiments.

A. Policy Expressiveness

In this experiment, we hypothesize that on random prob-
lems with a simulated, perfect supervisor, the performance
gap of RC diminishes as the robot’s policy becomes more
expressive.

1In the original DAgger the policy rollout was stochastically mixed with
the supervisor, thus with probability β it would either take the supervisor’s
action or the robot’s. However in [20], it was recommended to display
slowed down videos of the robot’s execution to the human, which prohibits
stochastic mixing.

c) Noisy Supervisor b) Deep Decision Tree

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce
1.0

0.8

0.6

0.4

0.2

0.0

Iteration
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

a) Linear SVM

Human-Centric Robot-Centric

Iteration Iteration

Fig. 2: We compare RC and HC LfD for low- and high-expressiveness policy classes (a and b respectively) over 100 randomly generated 2D grid world
environments, as a function of the amount of data provided to them. RC outperforms in the low-expressive condition, but the performance gap is negligible
in the high-expressive condition, when the policy class contains the expected supervisor policy. We also examine the case of noisy supervisor labels (c), in
which both techniques take more data to converge, but again perform similarly. The error bars shown are standard error on the mean.

In grid world, we have a robot that is trying to reach a
goal state, whereat it receives +10 reward. The robot receives
−10 reward if it touches a penalty state. The robot must learn
to be robust to the noise in the dynamics, reach the goal state
and then stay there. The robot has a state space of (x, y)
coordinates and a set of actions consisting of {Left, Right,
Forward, Backward, Stay}. The grid size for the environment
is 15 × 15. 8% of randomly drawn states are marked as a
penalties, while only one is a goal state. For the transition
dynamics, p(xt+1|xt,ut), the robot goes to an adjacent state
different from the one desired uniformly at random with
probability 0.16. The time horizon for the policy is T = 30.

We use Value Iteration to compute an optimal supervisor.
In all settings, we provided RC with one initial demonstration
from HC sampling before iteratively rolling out its policy.
This initial demonstration set from HC sampling is common
in RC methods like DAgger [19].

We run all trials over 100 randomly generated environments.
We measure normalized performance, where 1.0 represents
the expected cumulative reward of the optimal supervisor.
Low Expressiveness: Fig. 2(a) shows a case when the robot’s
policy class is empirically not expressive enough to represent
the supervisor’s policy. We used a Linear SVM for the policy
class representation, which is commonly used in RC [17],
[19], [20]. RC LfD outperforms HC , which is consistent
with prior literature [17], [19]. This outcome suggests that
when the robot is not able to learn the supervisor’s policy, RC
has a large advantage. Note that neither method converges to
the supervisor’s performance.
High Expressiveness: We next consider the situation where
the robot’s policy class is more expressive. We use decision
trees with a depth of 100 to obtain a highly expressive function
class.

As shown in Fig. 2(b), RC and HC both converge to the
true supervisor at the same rate. This suggests that when
model is more expressive and has enough data, it is no longer
as beneficial to obtain demonstrations with RC.
Noisy Supervisor: Real supervisors will not be perfect. Thus,
we study the effects of noise on the performance of the
two sampling techniques. This is particularly important for
HC, because an expressive learner might need many more
demonstrations when the supervision is noisy, perhaps making
samples on the current learned policy more useful. Here we

consider the case where noise is applied to the observed label,
thus the robot receives control labels that are a randomly
sampled with probability 0.3.

We use the same decision trees with depth 100. Due to the
larger expressiveness of a decision tree it is more susceptible
to over-fitting. We then compare the performance of HC vs.
RC. As shown, both methods are able to converge to the
expected supervisor’s normalized performance, suggesting
they can average out the label noise with enough data.
Although it takes more data than without noise, both methods
(HC and RC) converge at a similar rate to the true expected
supervisor.

B. Algorithmic Convergence

In this experiment, we show an example in which HC
converges to the supervisor’s performance and RC does not.
We construct an environment that is representative of our
insight that in real problems the policy on all states (including
recovery behaviors) is more complex than the policy on the
supervisor’s distribution.

We consider the example where a robot needs to learn
to get to a location in a 2D, continuous domain. The robot
is represented as a point mass with discrete time double
integrator and linear dynamics.

The environment contains two sets of dynamics (1 and 2):

xt+1 = Axt +B1ut + w

xt+1 = Axt +B2ut + w

where w ∼ N (0, 0.1I). The state of the robot is x =
(x, y, vx, vy), or the coordinates and the velocity. The control
inputs to the robot u = (fx, fy), or the forces in the
coordinate directions. The matrix A is a 4×4 identity matrix
plus the two values necessary to update the x, y state by the
velocity with a timestep of 1. B1 and B2, correspond to a
4 × 2 matrix that updates only the velocity for each axis
independently. This update corresponds to vt+1 = vt + 1

m ft,
where m is the mass of the robot.

The dynamics for region 1 correspond to the point robot
having a mass of m = 1. In region 2, the point robot has a
larger mass of m = 4. A target goal state lies at the origin
[0, 0] and the robot starts out at the point [−15,−10] with a
velocity of zero. The boundary between regions 1 and 2 lies

1

2
Supervisor HC RC

Iterations

C
o
s
t

0 2 4 6 8 10
103

104

105

106

107

108

109

Fig. 3: Left: A 2D workspace where a point mass robot is taught to go to
the green circle starting from the black circle. The world is divided into to
two regions with different dynamics. The supervisor is computed via infinite
horizon LQG for each region, which results in two different linear matrices
in region 1 and 2. Right: RC fails to converge because it is attempting to
learn a policy across the two regions, whereas HC remains in region 1 and
converges to the supervisor performance. The error bars shown are standard
error on the mean.

at x = 12 and y = 12, where region 2 exists when x > 12
and y > 12. An illustration is shown in Fig. 3. The time
horizon for the task is T = 35.

The supervisor is a switching linear system, where each
linear model is computed via the infinite horizon LQG for
the specified dynamics. The robot receives feedback from the
supervisor based on it’s current region. The robot’s policy,
πθ, is a linear function which we find via least squares.

We run HC and RC in this setting and plot the performance
in Fig. 3, averaged over 200 trials. HC is able to converge to
the true supervisor’s policy. However, the RC approach forces
the robot to enter region 2. This prevents it from converging
because it attempts to fit a single linear policy to two linear
supervisors.

C. Real-World Problem

Next, we perform a pilot user study on a real robot to
test performance in practice. Participants teach the robot to
perform a singulation task (i.e., separate an object from its
neighbors), illustrated in Fig. 4. A successful singulation
means at least one object has its center located 10 cm or
more from all other object centers.

We hypothesize that HC will match the supervisor more
accurately than RC in practice, because: 1) RC sampling will
cause the robot to try and learn more complex behavior, 2)
participants will struggle with providing retroactive feedback.

The robot has a two-dimensional control space, U , that
consits of base rotation and arm extension. The state space
of the environment, X , is captured by an overhead Logitech
C270 camera, which is positioned to capture the workspace
that contains all cluttered objects and the robot arm. The
objects are red extruded polygons. We consider objects
made of Medium Density Fiberboard with an average 4”
diameter and 3” in height. We use the current image of
the environment as the state representation, which captures
positional information. The policy is a deep neural network
with the architecture from [12]. The network is trained using
TensorFlow [1] on a Tesla K40 GPU.

The robot is moved via positional control implemented
with PID. Similar to [13], the control space U consists of
bounded changes in rotation and translation. The control
signals for each degree of freedom are continuous values
with the following ranges: base rotation, [−1.5◦, 1.5◦], arm
extension [−1cm, 1cm].

SingulatedInitial State

Fig. 4: Left: An example initial state observed by the robot. The initial state
can vary the relative position of the objects and pose of the pile. Right: A
human is asked to singulate the object. Singulation is to have the robot learn
to push one object away from its neighbors. A successful singulation means
at least one object has its center located 10 cm or more from all other object
centers.

a) b)

Fig. 5: Two ways to provide feedback to the robot. a) In HC sampling,
the human teleoperates the robot and performs the desired task. For the
singulation task, the human supervisor used an Xbox Controller. b) In RC
sampling, the human observes a video of the robot’s policy executing and
applies retroactive feedback detailing what the robot should have done. In
the image shown, the person is telling the robot to go backward towards the
cluster.

During training and testing the initial state distribution,
p(x0) consisted of sampling the translation of the cluster
from a multivariate isotropic Gaussian with variance of 20cm
and the rotation was selected uniformly from the range
[−15◦, 15◦]. The relative position of the 4 objects are chosen
randomly. To help a human operator place objects in the
correct pose, we used a virtual overlay on the webcam feed.

We selected 10 UC Berkeley students as human subjects.
The subjects were familiar with robotics, but not the learning
algorithms being assessed. They first watched a trained robot
perform the task successfully. They then practiced providing
feedback through RC sampling for 5 demonstrations and HC
sampling for 5 demonstrations. Next, each subject performed
the first 20 demonstrations via HC sampling, then performed
40 HC demonstrations and 40 RC demonstrations in a counter-
balanced order. In RC, we chose K = 2 iterations of 20
demonstrations each. The experiment took 2 hours per person
on average.

In HC, we asked participants to provide 60 demonstrations
to the robot using an Xbox Controller, as shown in Fig. 5a.
In RC, participants provided 20 initial demonstrations via the
Xbox Controller, and then provided retroactive feedback for
K = 2 iterations of 20 demonstrations each.

Retroactive feedback was provided through a labeling
interface similar to our previous work [12] illustrated in
Fig 5b. In this interface, we showed a video at half speed of
the robot’s rollout to the participant. They then use a mouse
to provide feedback in the form of translation and rotation.
We provide a virtual overlay so that they can visualize the
magnitude of their given control. A video that illustrates this

Human-Centric Robot-Centric

P
ro

b
ab

il
it

y
 o

f
S

u
cc

es
s

0.7

0.5

0.3

0.1

0 20 40 60

Iterations

Fig. 6: Average success at the singulation task over the 10 human subjects
as a function of number of demonstrations. Each policy is evaluated 30
times on the a held out set of test configurations. The first 20 rollouts are
from the supervisor rolling out there policy and the next 40 are collected
via retro-active feedback for RC and tele-operated demonstrations for HC.
HC LfD shows a 20% improvement in success at the end. The error bars
shown are standard error on the mean.

Surrogate Loss on Test Set
Algorithm

Type Translation (mm) Rotation
(rad)

HC LfD 2.1 ± 0.2 0.009 ± 0.001
RC LfD 3.4 ± 1.0 0.014 ± 0.003

TABLE I: The average surrogate loss on a held out set of 10 demonstrations
from the the total 60 demonstrations collected from each 10 participants.
The confidence intervals are standard error on the mean, which suggest
that RC LfD obtains a statistically significant higher surrogate loss in both
degrees of freedom, forward and rotation.

setup and describes the different sampling approaches can be
found at https://berkeleyautomation.github.
io/lfd_icra2017/.

In Fig. 6 , we show the average performance of the policies
trained with RC and HC LfD. Each policy is evaluated on
a holdout set of 30 initial states sampled from the same
distribution as training. The policies learned with RC have
approximately 40% probability of success versus 60% for HC.
This suggests that HC may outperform RC when supervision
is provided through actual human demonstrations.

D. Understanding RC Performance in Practice
To better understand why RC performed worse than HC, we

looked for the two causes in our hypothesis: policy complexity,
and difficulty of human supervision.
Policy Complexity: We first analyzed the complexity of
behaviors collected with RC sampling. In Fig. 1c, we show
trajectories collected on a single initial state during the study.
As illustrated, HC sampling is concentrated around paths
needed to singulate the bottom right object. However, RC
sampling places the robot in a wide variety of states, some of
which would require the robot to learn how to move backward
or rapidly change direction to recover.

To better analyze this, we examined the surrogate loss on
a test set of 10 randomly selected trajectories from each
supervisor’s dataset. As shown in Table 1, we observed
the average test error over the policies trained with 60
demonstrations in both degrees of freedom (i.e., translation
and rotation) is significantly higher. This indicates that on
average the RC policies had a harder time generalizing to
unseen labels in their aggregate dataset, which may be due
to the complexity of the corrective actions.
Human Supervision. We next hypothesized that the partici-
pants could have had trouble providing retroactive feedback

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

Human-Centric

R
o
b
o
t-

C
e
n
tr

ic

Fig. 7: Results from the post analysis examining how well retroactive
feedback matched teleoperation. The scatter plot shows the normalized angle
of the control applied for both HC (teleoperation) and RC (retroactive).
The large dispersion in the graph indicates that the five participants had
a difficult time matching their retroactive and teleoperated controls. Two
example trajectories are also shown. The black line indicates the path from
teleoperation and the teal line is the direction and scaled magnitude of the
feedback given. If they matched perfectly, the teal line would be tangent to
the path.

consistent with their true policy. To test this, we asked 5 of the
participants to provide 5 demonstrations via teleoperation. We
then asked them to match their controls via the RC labeling
interface.

We measured the correlation between the controls applied
via retroactive feedback and teleoperation. When calculated
over all the participants and trajectories, the Pearson Correla-
tion Coefficient in rotation and translation was 0.60 and 0.22,
respectively. A smaller correlation coefficient suggests that it
is harder for people to match their control in teleoperation.

In Fig. 7 we plot the control angle from HC sampling
versus the control angle from RC sampling, showing that
the two are not correlated. We also show two trajectories
that a participant teleoperated with their retroactive labels
overlayed, both of which suggest disagreement between the
teleoperated and retroactive controls. Overall, our analysis
suggests that RC sampling can lose the intent of the human
supervisor.

V. THEORETICAL ANALYSIS

To better understand the empirical results from above, we
contribute new theoretical analysis on RC and HC LfD. In
this section, we first show the existence of environments
where HC converges to the supervisor but RC does not. Then
we present a new analysis of the accumulation of error for
HC .

A. Algorithm Consistency

In this section we work towards a fuller understanding of
the tradeoffs between HC and RC. The analysis of RC LfD
in [19] is performed in the context of the regret framework
of online learning. In online learning, at each iteration k ∈
{1, . . . , N} the algorithm chooses an action θk ∈ Θ (e.g. a
policy to roll out) [21], and observes some loss fk(θk). Online
learning is analyzed in the context of a regret guarantee: an
upper bound (e.g.

√
N) on the cumulative loss incurred by

the algorithm relative to taking just the best single action in
Θ:

sup
θ∈Θ

N∑
k=1

fk(θk)− fk(θ).

In the context of robotics and specifically in the case of
RC LfD, taking an action θk at iteration k is rolling out
a policy dictated by θk which induces a series of states
xk,1, . . . ,xk,T and taking the aggregate loss evaluated with

https://berkeleyautomation.github.io/lfd_icra2017/
https://berkeleyautomation.github.io/lfd_icra2017/

respect to these states. Because these particular states could
have been produced by a poor policy due to initialization,
they could have little relevance to the task of interest and
consequently, it makes little sense to compare to the policy
that performs best on these particular states. What is important
is the absolute performance of a policy on the task of interest.
In the notation of Ross et al. [19] this notion of relative
regret is encoded in the εN error term that appears in their
bounds and is defined relative to the particular set of rollouts
observed by the RC LfD policy.

As an example for why low-regret may be uninformative,
consider a car-racing game where the car has constant speed
and the policy only chooses between straight, left, or right
actions at the current state. Suppose at some point in the
race the car encounters a “v” in the road where one path is
a well-paved road and the other path is a muddy dirt road
with obstacles. The car will finish the race faster by taking
the paved road, but due either to the stochastic dynamics or
imperfectness of the supervisor it is possible that after just a
small number of supervisor demonstrations given to the robot
to initialize RC LfD, a poor initial policy will be learned that
leads the car down the dirt road instead of the paved road.
When this policy is rolled out the supervisor will penalize
the decision at the time point of taking the dirt versus paved
road. But if the policy’s actions agree with the supervisor
once the car is on the dirt road (i.e., making the best of a
bad situation) this policy will incur low-regret because the
majority of the time the policy was acting in accordance with
the supervisor. Thus, in this example a globally bad policy
will be learned (because it took the dirt road instead of the
paved road) but relative to the best policy acting on the dirt
road, it performs pretty well.

The next theorem shows an instance in which an initial
policy can be different enough from the optimal policy that
the states visited by the initial policy – even with corrective
feedback from the supervisor – are not informative or relevant
enough to the task to guide RC LfD to the optimal policy.

Theorem 5.1: For a given environment (state space, action
space, dynamics mapping state-action pairs to states, and
a loss function) and policy class Θ, let θNHC be the policy
learned from N supervisor demonstrations, and let θNRC be the
policy learned by the RC procedure described in Section III,
initialized with m supervisor demonstrations. Then there
exists an environment and policy class Θ such that
• θ∗ is the unique minimizer of Ep(τ |θ)[J(θ)],
• limN→∞ θNHC = θ∗ with probability 1,
• limN→∞ θNRC 6= θ∗ with probability at least ce−m

for some universal constant c. In other words, even with
infinite data RC may converge to a suboptimal policy while
HC converges to the best policy in the class that uniquely
achieves the lowest loss.

Proof: Let {{(xk,t,uk,t}3t=0}Nk=1 denote N trajectories.
Consider an environment with a deterministic initial state at
the root of the DAG of Figure 8 so that p(xk,0 = root) =
1 for all k. The space of policies are constant functions
Θ = {L,R} where if θ = L, then regardless of the state,
the control input uk,t will be to take the left child (and
analogously for θ = R taking the right child). For any state
in the DAG with children, let φ(xk,t, θ) denote the left child

1

1

1

0

0 0

1

1

00

01

Fig. 8: A Directed Acyclic Graph, where a robot is being taught by a
supervisor to descend down and achieve maximum cumulative reward,
which is shown via the numbers on each branch. Each node has the action
the supervisor would select, either left or right, {L,R}. The HC method
converges to the Orange path, which is optimal. However, the RC method
converges to the Teal path, because it tries to learn on examples from that
side of the tree.

of xk,t if θ = L. Otherwise, denote it the right child. The
dynamics are described as follows: for some µ ∈ (0, 1/4] to
be defined later, if θ = L and xk,t = root then p(xk,1 =
φ(xk,0, R)) = µ and p(xk,1 = φ(xk,0, L)) = 1 − µ, but if
θ = R then the right child is chosen with probability 1. If
xk,t 6= root then xk,t+1 = φ(xk,t, θ).

Assume that the supervisor π∗ : X → {L,R} acts greedily
according to the given rewards given in the DAG so that
π∗(xk,t) = L if the reward of the left child exceeds the right
child and π∗(xk,t) = R otherwise. Finally, define the state
loss function `(·, ·) as the 0/1 loss so that after N trajectories,
the loss is given as JN (θ) =

∑N
k=1

∑2
t=0 1{π∗(xk,t) 6= θ}

for all θ ∈ {L,R}. Note that θ̂N = arg minθ∈{L,R} JN (θ)
is equivalent to looking at all actions by the supervisor over
the states and taking the majority vote of L versus R (i.e.,
the states in which these actions are taken has no impact on
the minimizer). Note that we have not yet specified how the
states xk,t were generated.

We can compute the true loss when the trajectories are
generated by θ ∈ {L,R}. Let the empirical distribution of
observed states under a fixed action θ ∈ {L,R} be given by
p(τ | θ), then

Ep(τ |θ=L)J(θ = L) = p(xk,1 = φ(xk,0, L)) · 0+

p(xk,1 = φ(xk,0, R)) · 2 = 2µ

Ep(τ |θ=R)J(θ = R) = 1

which implies that θ∗ = L and performs strictly better than
R whenever µ < 1/2.

It follows by the stochastic dynamics that the demonstrated
action sequence by the supervisor equals {L,R,R} with
probability µ and {L,L,L} with probability 1 − µ. After
m supervisor sequences, the expected number of L actions
is equal to µ + 3(1 − µ) = 3 − 2µ while the expected
number of R actions is equal to just 2µ. By the law of
large numbers, if only supervisor sequences are given then
arg minθ∈{L,R} Jm(θ)→ L = θ∗ as m→∞ since 3−2µ >
2µ for all µ < 1/2. In other words, θNHC → θ∗ as N →∞.

We now turn our attention to the RC policy. Note that if
after m supervisor action sequences we have that the number
of observed R’s exceeds the number of observed L’s, then
the RC policy will define θmRC = R. This proof assumes
β = 0 in the RC (DAgger) algorithm [19], however it can
be extended to include β without loss of generality. It is
easy to see that a policy rolled out with θ = R will receive

the supervisor’s action sequence {L,R,R} and thus R will
remain the majority vote and consequently θNRC = R for all
N ≥ m. What remains is to lower bound the probability that
given m supervisor demonstrations, θmRC = R.

For k = 1, . . . ,m let Zk ∈ {0, 1} be independent
Bernoulli(µ) random variables where Zk = 1 represents
observing the supervisor sequence {L,R,R} and Zk = 0 rep-
resents observing {L,L,L}. Given m supervisor sequences,
note that the event arg minθ∈{L,R} Jm(θ) = R occurs if
1
m

∑m
k=1 Zk > 3/4. Noting that

∑m
k=1 Zk is a binomial(m,µ)

random variable, the probability of this event is equal to
m∑

k=b3m/4c+1

(
m

k

)
µk(1− µ)m−k ≥ Φ

(
b3m/4c+ 1− µm√

mµ(1− µ)

)
where we have used Slud’s inequality [22] to lower bound
a binomial tail by a Gaussian tail. Setting µ = 1/4 we can

further lower bound this probability by Φ

(
m+2√
3m/4

)
≥ ce−m

for some universal constant c. Consequently, with probability
at least ce−m we have that limN→∞ θNRC = R 6= θ∗ which
implies that the expected loss of limN→∞ θNRC must exceed
the expected loss of θ∗ = L.

We note there exist techniques to correct for this problem.
One approach is to consider the value of each action and
select actions that lead to higher reward during roll-out [18].
However, this assumes the robot has access to a reward
function that provides sufficient information during each roll-
out. Another solution is to increase the model expressiveness
of the robots policy class. However, this could require more
data than HC methods [23].

VI. DISCUSSION AND FUTURE WORK

Motivated by recent advances in Deep Learning from
Demonstrations for robot control, this paper reconsiders HC
and RC sampling in the context of human supervision, finding
that policies learned with HC sampling perform equally well
or better with classes of highly-expressive learning models and
can avoid some of the drawbacks of RC sampling. We further
provide new theoretical contributions on the performance of
both RC and HC methods.

It is important to note that there are challenges to using
highly- expressive policies. When training complex models
such as Recurrent Neural Networks or Differentiable Neural
Computers, it may be difficult to achieve low training error
or enough data [6], [9]. Thus, future work is to consider how
to best learn robust policies that are Human-Centric.

VII. ACKNOWLEDGMENTS

This research was performed at the AUTOLAB at UC
Berkeley in affiliation with the UC Berkeleys Algorithms,
Machines, and People Lab, BAIR, BDD, and the CITRIS
People and Robots (CPAR) Initiative: http://robotics.
citris-uc.org. KJ is supported by ONR awards N00014-
15-1-2620 and N00014-13-1-0129. JM is the Department of
Defense (DoD) through the National Defense Science &
Engineering Graduate Fellowship (NDSEG) Program. We
acknowledged David Gealy and Menglong Guo for their help
with the hardware setup . We also thank Florian Pokorny,
Drew Bagnell, Hal Duame III and Roy Fox for valuable
insight

REFERENCES

[1] “Tensor flow,” https://www.tensorflow.org/.
[2] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-based

learning from demonstration,” International Journal of Social Robotics,
vol. 4, no. 4, pp. 343–355, 2012.

[3] B. Akgun, K. Subramanian, and A. L. Thomaz, “Novel interaction
strategies for learning from teleoperation.”

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and autonomous systems,
vol. 57, no. 5, pp. 469–483, 2009.

[5] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexi-
ties: Risk bounds and structural results,” Journal of Machine Learning
Research, vol. 3, no. Nov, pp. 463–482, 2002.

[6] S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer, “Scheduled sampling
for sequence prediction with recurrent neural networks,” in Advances
in Neural Information Processing Systems, 2015, pp. 1171–1179.

[7] R. Dillmann, M. Kaiser, and A. Ude, “Acquisition of elementary robot
skills from human demonstration,” in International symposium on
intelligent robotics systems. Citeseer, 1995, pp. 185–192.

[8] F. Duvallet, T. Kollar, and A. Stentz, “Imitation learning for natural
language direction following through unknown environments,” in ICRA.
IEEE, 2013, pp. 1047–1053.

[9] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-
Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou
et al., “Hybrid computing using a neural network with dynamic external
memory,” Nature, vol. 538, no. 7626, pp. 471–476, 2016.

[10] H. He, J. Eisner, and H. Daume, “Imitation learning by coaching,”
in Advances in Neural Information Processing Systems, 2012, pp.
3149–3157.

[11] B. Kim and J. Pineau, “Maximum mean discrepancy imitation learning.”
in Robotics Science and Systems, 2013.

[12] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “Robot grasping in clutter: Using a hierarchy
of supervisors for learning from demonstrations,” Automation Science
and Engineering (CASE), 2016 IEEE, pp. 827–834, 2016.

[13] M. Laskey, S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “Shiv: Reducing supervisor burden in dagger
using support vectors for efficient learning from demonstrations in
high dimensional state spaces,” in Robotics and Automation (ICRA),
2016 IEEE International Conference on. IEEE, 2016, pp. 462–469.

[14] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” arXiv preprint arXiv:1504.00702, 2015.

[15] S. Levine and V. Koltun, “Variational policy search via trajectory
optimization,” in Advances in Neural Information Processing Systems,
2013, pp. 207–215.

[16] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Carnegie-Mellon University, Tech. Rep., 1989.

[17] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in International Conference on Artificial Intelligence and Statistics,
2010, pp. 661–668.

[18] S. Ross and J. A. Bagnell, “Reinforcement and imitation learning via
interactive no-regret learning,” arXiv preprint arXiv:1406.5979, 2014.

[19] S. Ross, G. J. Gordon, and J. A. Bagnell, “A reduction of imita-
tion learning and structured prediction to no-regret online learning,”
AISTATS. Vol. 1. No. 2, 2011.

[20] S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey,
J. A. Bagnell, and M. Hebert, “Learning monocular reactive uav control
in cluttered natural environments,” in ICRA, 2013 IEEE. IEEE.

[21] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and Trends R© in Machine Learning, vol. 4, no. 2,
pp. 107–194, 2012.

[22] E. V. Slud, “Distribution inequalities for the binomial law,” Ann.
Probab., vol. 5, no. 3, pp. 404–412, 06 1977. [Online]. Available:
http://dx.doi.org/10.1214/aop/1176995801

[23] V. Vapnik, “Principles of risk minimization for learning theory,” in
Advances in Neural Information Processing Systems, 1992, pp. 831–
838.

http://robotics. citris-uc.org
http://robotics. citris-uc.org
https://www.tensorflow.org/
http://dx.doi.org/10.1214/aop/1176995801

	Introduction
	Related Work
	Problem Statement and Background
	Step 1
	Step 2

	Empirical Analysis
	Policy Expressiveness
	Algorithmic Convergence
	Real-World Problem
	Understanding RC Performance in Practice

	Theoretical Analysis
	Algorithm Consistency

	Discussion and Future Work
	Acknowledgments
	References

