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Abstract— Human demonstrations can be valuable for teach-
ing robots to perform manipulation and coordination tasks.
However, it can be difficult for human supervisors to pro-
vide demonstrations for multilateral (multi-arm) tasks, which
require divided attention. In this paper, we propose a new
algorithm called Bilateral Iterated Best Response (BIBR), which
builds on the game-theoretic concept of Iterated Best Response.
This algorithm allows a supervisor to train each manipulator
iteratively, thereby reducing supervisor burden and improving
the quality of demonstrations. We present a web-based user
study of 51 participants controlling two agents in a GridWorld
environment with a keyboard interface. We confirm prior
work that bilateral demonstrations are noisier and longer
than demonstrations provided separately for either manipulator
when the task is asymmetric. As unilateral demonstrations
lack coordination, this paper proposes learning coordinated
bilateral policies from unilateral demonstrations by rolling
out an estimated robot policy for one arm while the human
demonstrates for the other, iteratively updating the estimated
policy. Compared to a bilateral demonstration baseline, BIBR
improves the success rate of the learned policy from 29.17%
to 55.55% in the asymmetric task in the first full round of
demonstrations. Furthermore, these policies learn trajectories
that have 8.63% fewer steps and smoother trajectories, i.e.,
have 44.15% fewer changes in direction.

I. INTRODUCTION

Bilateral manipulation of two independent end-effectors is
common in many automation tasks in manufacturing, surgery,
and personal robotics [22]. One approach for designing
bilateral control policies is Learning from Demonstration
(LfD) [1], where the robot learns to perform some task by
observing demonstration trajectories generated by a human
supervisor. Existing work in bilateral LfD assumes that the
human can jointly control both arms — either by simul-
taneously providing demonstrations for both arms [17, 21,
28], or by making an assumption that both arms are coupled
by a known function such as a distance field [6, 14, 25].
While the former approach applies to a wider set of bilateral
scenarios, results in psychology and biomechanics suggest
that humans are significantly less reliable in bilateral motion
compared to moving a single arm [24]. Studies have found that
humans tend to exhibit spatial and temporal synchronization
in left and right motor control, which degrades performance
in asymmetric bilateral tasks, i.e., tasks that require different
motions of the two arms [2, 4, 5, 23, 27]. Intuitively, human
demonstrators have limited attention, and their performance
suffers when this attention is further divided into multiple
simultaneous control tasks. Since LfD algorithms often
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Fig. 1: This paper presents the Bilateral Iterated Best Response
(BIBR) algorithm and a comparative user study of 51 participants
performing symmetric and asymmetric GridWorld block moving
tasks with keyboard input. We explore learning a policy from
demonstrations moving the blocks from the start locations to the goal
locations. Users provide input simultaneously for the two blocks
using either both hands or train the policies iteratively by providing
single-handed demonstrations with BIBR. Optimal trajectories are
shown with light to dark shading.

assume an optimal supervisor, reduced demonstration quality
can degrade robot performance [3].

We investigate the feasibility of allowing the human
supervisor to train a single manipulator at a time for bilateral
LfD tasks. Naively, however, these unilateral demonstrations
could overlook any opportunity for coordination between
the manipulators. To account for coordination, this paper
proposes learning coordinated bilateral policies from unilateral
demonstrations by rolling out an estimated robot policy
for one manipulator while the human demonstrates for the
other. The human alternates between manipulators in batches,
iteratively teaching the robot an updated approximate policy.
We call this algorithm Bilateral Iterated Best Response
(BIBR), as it is inspired by the game-theoretic concept
of a best response, with each manipulator modeled as an
independent agent in a cooperative game.

We present an initial web-based user study of 51
participants in a GridWorld environment where participants
controlled two agents with a keyboard interface (Figure 1).
The agents (represented by solid blocks) start in fixed
locations and need to cross between the two rooms to the
outlined goals over a narrow doorway. Crossing this doorway
requires coordination between the two agents. We consider
both symmetric tasks, where the two agents have to perform
the same actions up to reflection, and asymmetric tasks,
where the agents take markedly different motions to get to
their respective targets.



Summary of Contributions
1) We propose an algorithm, BIBR, for teaching bilateral

manipulation using Iterated Best Response demonstra-
tions.

2) We evaluate this algorithm in a 51 participant web-
based user study, where results suggest that, under the
constraints of the GridWorld environment, the learned
policies from demonstrations provided via BIBR induce
trajectories that are shorter and smoother. Successful
policies are achieved at a rate of 56% as compared to
29% for the bilateral baseline within the first round of
full demonstrations, and user survey responses suggest
that BIBR makes bilateral demonstrations significantly
easier to provide.

II. RELATED WORK

Learning from Demonstrations (LfD) is a widely studied
field [1] with applications that include self-driving cars [16],
grasping in clutter [10], and surgical suturing [25]. In
principle, the theory and algorithms of LfD can be applied
to demonstrations for multiple manipulators in multilateral
tasks by modeling the joint state and action spaces of all
manipulators. However, it is common in practice to only
consider unilateral tasks, or tasks with a single robotic
manipulator. Bilateral manipulation tasks have been shown to
be difficult for novice human demonstrators. For instance, the
comparative study in [26] suggests that dividing endoscopic
endonasal surgical bilateral tasks between two surgeons
instead of a single surgeon positively affects training and
performance of the procedure. The difficulty associated with
bilateral tasks can be attributed to a phenomenon known as
bilateral deficit, where the sum of unilateral performances
is greater than the simultaneous performance of two limbs
[27] as well as the fact that perceptual and visuomotor tasks
compete for the same cognitive resources [23].

Furthermore, the challenges of bilateral manipulation are
amplified as the task becomes asymmetric [2]. An example of
asymmetry in robotic manipulation is cloth cutting, which re-
quires one manipulator to perform precise cutting movements
while the other tensions the cloth appropriately [12]. Results
from a case study on human–robot collaboration for cloth
cutting addressed this difficulty, showing that participants
were able to complete the task faster when they were only
required to operate the cutting arm while tensioning was
automated, instead of jointly teleoperating both manipulators
[20].

Within the existing literature for bilateral LfD, manipulators
are simultaneously controlled and frequently considered as
coupled. For instance, in [7], the authors kinesthetically
demonstrate trajectories on both manipulators to infer a
relative position function between the two end-effectors
for automated coordination. More recently, the authors of
[14] demonstrate online trajectory planning in dynamic
environments for two surgical subtasks by maintaining an
explicit coupling of the two manipulators when learning
bilateral motions. In a similar sense, [21] encodes the demon-
strations and determines the coordination patterns between

the end-effectors. The authors of [15] present learning from
demonstrations with constraints (C-LEARN), which includes
constraints relating multiple end-effectors.

However, to the best of our knowledge, no work has
yet considered performing demonstrations for bilateral co-
ordination tasks iteratively rather than simultaneously. The
authors of [11] provide insight as to how one might approach
this problem of cooperative control using game theory.
They demonstrate how cooperative control problems such as
consensus or dynamic sensor coverage can be posed as a
potential game. Using this model, an equilibrium mutual-best-
response control profile can be found iteratively. In [13], the
authors improve human-robot collaboration by allowing the
robot to model human partial adaptation as a best-response
game. Here, we consider how human demonstrations can be
applied iteratively as best responses on bilateral systems
to teach locally optimal policies in collaborative control
problems.

III. PROBLEM STATEMENT

We propose a new training protocol that follows the game-
theoretic concept of Iterated Best Response, allowing a
single supervisor to train each manipulator iteratively. While
the ideas generalize to more complex scenarios, this paper
considers an initial user study on a GridWorld game where
the state and action spaces are discrete and finite.

A. Imitation Learning

As a starting point for our problem statement, we consider
imitation learning (IL), which studies the problem of imitating
a supervisor’s policy by observing demonstration trajectories
sampled using this policy. For a state set X , an action set
U , a fixed initial state x0 ∈ X , a state transition distribution
P(xt+1|xt ,ut), and some parametrization θ ∈ Θ of allowed
policies πθ : X 7→ U , we consider the distribution p(ξ |θ) of
the trajectory ξ = (x0,u0,x1,u1, . . . ,xT ) induced by the policy
πθ

p(ξ |θ) =
T−1∏
t=0

1{ut=πθ (xt )}P(xt+1|xt ,ut).

The objective is to minimize the expected disagreement with
the supervisor on states visited by the robot while applying
πθ :

argmin
θ

Eξ∼p(ξ |θ)[`(πθ (x),πθ∗(x))],

for a loss function ` and unknown supervisor policy πθ∗ .
Note that we do not assume θ ∗ is a member of the class Θ.
Imitation learning seeks to mimic the supervisor’s behavior
as a proxy for some unknown global reward function R :
X ×U 7→ R:

Eξ∼p(ξ |θ∗)

[T−1∑
t=0

R(xt ,ut)

]
By matching the supervisor’s policy well enough, a high total
expected reward can also be achieved by the robot.

Suppose that the N demonstration trajectories ξi of length
T are sampled from the distribution p(ξi|θ ∗) induced by the



supervisor policy. A common approach to determining θ is
via Behavioral Cloning, where the empirical disagreement is
minimized over the observed states and actions:

argmin
θ

N∑
i=1

T−1∑
t=0

`(πθ (xi,t),πθ∗(xi,t)).

This approach is justified when the dynamics are Markovian
and fully observed. Behavior Cloning has been shown to
better facilitate human supervision, compared to adaptive
methods [9].

However, a weakness of IL is that it aims to match
the performance of the demonstrator. If the demonstrator
is inherently deficient at a task, the robot will learn this
deficiency. This is particularly a limitation in asymmetric
bilateral manipulation, where the quality of the demonstrations
can be poor due to the bilateral deficit of bounded human
cognition.

Therefore, we propose to apply IL over partitioned demon-
strations, where the human only demonstrates for a single
manipulator at a time. The challenge of this approach is in
modeling and learning a coordinated bilateral policy, despite
only observing unilateral demonstrations.

B. Multi-Agent Formulation

We consider the bilateral manipulation problem as a two-
player game. We can define a finite-time Markov game
to describe this problem, where each manipulator is an
independent agent:

〈X ,{U1,U2},P,R,T 〉. (1)

Here X defines the state of the environment (which jointly
describes both agents) and U i defines the action sets of each
individual agent. In each of the T rounds of the game, the
two agents choose an action and play them simultaneously,
and the world state transition distribution is P(xt+1|xt ,u1

t ,u
2
t ).

Both agents (manipulators) jointly receive the same reward
R(xt ,u1

t ,u
2
t ) for their actions.

The partitioning of the action space into two agents means
that we have to learn two policies:

π
1 : X 7→ U1

π
2 : X 7→ U2,

which can similarly be denoted by their respective parameters
θ 1 and θ 2. These policies are coupled through the dynamics
P. If one of these policies were known, e.g. π2, we would
exactly recover single-agent IL by taking

P1(xt+1|xt ,u1
t ) = P(xt+1|xt ,u1

t ,π
2(xt))

R1(xt ,u1
t ) = R(xt ,u1

t ,π
2(xt)).

We could roll out policy π2 simultaneously while the human
demonstrates for arm 1, and apply the Behavioral Cloning
algorithm to estimate π1.

Instead of assuming that π2 is known, we assume that it
is learned alternatingly with π1. Both policies are initialized
arbitrarily. Then, we first demonstrate for manipulator 1 and
update π1 with an estimate. Following this step, we switch to
demonstrate for manipulator 2 using the previous estimate of

π1 to roll-out a trajectory for arm 1. This process alternates
until a fixed-point is reached or the human supervisor deems
the task complete.

We assume that the human can provide best responses;
that is, given any fixed policy for the automated manipulator,
we assume that the supervisor can provide a demonstration
trajectory by controlling the demonstration manipulator using
the policy that maximizes the total expected reward. Under
this assumption, the expected reward never decreases in any
iteration, and it monotonically improves towards a limit value.
By iteratively applying imitation learning, we approximate
this equilibrium solution of the Markov game. We formalize
this intuition in the next section.

IV. BILATERAL ITERATED BEST RESPONSE

A. Iterated Best Response

A best response is defined as the optimal policy for a
single agent, given the other agent’s policy is fixed. For the
Markov game in Equation (1), the best response for agent 1
given agent 2’s policy is defined as:

β
1[θ 2] = argmax

θ 1
Eξ∼p(ξ |θ 1,θ 2)

[T−1∑
t=0

R(xt ,u1
t ,u

2
t )

]
,

with ξ = (x0,u1
0,u

2
0,x1,u1

1,u
2
1, . . . ,xT ) a game trajectory, and

similarly for β 2[θ 1].
An equilibrium solution is any control profile (π1,π2)

in which each policy is simultaneously a best response
to the other policy. Iterated Best Response (IBR) is an
optimization technique to approximate such a solution. In
IBR, one iteratively chooses one policy to optimize given
the other policy, which is fixed. IBR will converge to an
equilibrium under the conditions described in [11, 19].

B. Bilateral Iterated Best Response

Inspired by IBR, we propose Bilateral Iterated Best Re-
sponse (BIBR) to learn bilateral manipulation tasks iteratively
by alternating demonstrations for different manipulators. The
manipulators’ policies are first initialized, the supervisor
provides a set of demonstrations for the first manipulator, and
the robot learns an approximate policy for this manipulator.
The supervisor then demonstrates for the second manipulator
while the robot rolls out the learned policy for the first
manipulator. This process is iterated by alternating between
rolling out the policy for one manipulator and demonstrating
the best response for the other.

We assume that in every iteration, the supervisor for
manipulator i demonstrates the best response for the learned
policy for the other manipulator, denoted −i. In iteration k,
BIBR collects a batch of N demonstrations and uses IL to
imitate the best response policy for one manipulator given
the other manipulator’s fixed policy θ

−i
k−1:

θ
i
k = argmin

θ i

N∑
i=1

T−1∑
t=0

`(πθ i(xi,t),β
i[θ−i

k−1]). (2)

This procedure is outlined in Algorithm 1.



Algorithm 1 Bilateral Iterated Best Response

Hyperparameters: batch size of demonstration set N,
number of rounds K
Initialize: θ 1

0 and θ 2
0 , i← 1

for k = 1, . . . ,K do
Use θ

−i
k−1 to control other manipulator −i

Collect N demonstrations for β i[θ−i
k−1]

Update θ i
k by imitation (2)

Switch manipulators i←−i

V. EXPERIMENTS

We now present an initial investigation of BIBR in
symmetric and asymmetric bilateral manipulation tasks in a
simulated GridWorld environment. As a baseline, we consider
joint learning, where data are collected on both agents
simultaneously and a policy is learned with imitation learning.
We collect data in rounds and measure the value of the policy
learned with the data in the current round. In this constructed
environment, the number of agents to reach a goal state,
time-to-goal, and smoothness of trajectory are examples of
variables that are used to evaluate the policies at each round.

The experiments are organized as follows: (1) in a 7-
subject pilot study, we present results that suggest that effects
of symmetry vs. asymmetry observed in prior work [4]
are also observed in the GridWorld game; and (2) in a
51-participant study, our results indicate that BIBR has
a higher probability of converging to a successful policy
with fewer demonstrations than joint learning. The study
lasted 15 minutes per participant, and all were informed that
participation was fully voluntary and that they could leave
the experiment at any time1. Out of the 90 total participants
to initialize an instance of the experiment, 51 completed the
entire experiment. We use the 51 participants who completed
the study as our subject pool.

A. Game Parameters

We evaluate BIBR using a custom two-handed web game
(see Figure 1). The experimental environment consists of
a simple GridWorld containing two moveable blocks (the
agents), two goals, and impenetrable walls. The objective of
the game is to navigate the agents around the walls and each
other while moving towards their respective goals. The state
xt ∈R2 is composed of the grid location of the two moveable
agents at time t, and we restrict U to only contain four
possible actions: left, up, right, and down. The dimensions
of the GridWorld are 8× 10, scaled by 30, so each agent
can move to approximately 72000 distinct locations. Because
there are two agents, the size of the state space X is therefore
on the scale of 72000×72000.

The keyboard serves as the interface between the participant
and the game. The box that begins on the left side of the
GridWorld is controlled by the keys (A,W,D,S), and the box
that begins on the right side of the world is controlled by the
keys (←, ↑, →, ↓), respectively for the four actions listed
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Fig. 2: First experimental environment. The user has to control the
blue and the yellow agents through the disjoint mazes. Each user
was asked to perform this task twice — once, with both hands, and
once single-handed using BIBR. The task is successful when both
agents arrive at their goal states.

above. Once the participant begins the game, the two agents
move at a constant speed of 2 pixels per 20 milliseconds. This
feature was implemented to ensure simultaneous movement
of the two agents, i.e. that a participant could not trivialize the
task by having the agents move one at a time. The game ends
when both agents reach their respective goals. We count a step
for each agent every 20 milliseconds before it reaches its goal
and a turn for each agent when it changes its direction (or
action). For the duration of the experiments, the GridWorld
game was hosted on an Amazon EC2 instance.

B. Experiment 1: Demonstrations of Asymmetric Tasks

In our first experiment, we constructed a simplified
GridWorld map to understand whether the results in prior
work e.g., [4], applied to our task and scenario. Figure
2 illustrates the first scenario. A yellow agent and a blue
agent start on opposite sides of the map and have to traverse
disjoint mazes. This scenario is simplified as it does not
involve coordination between the agents, in contrast with the
following experiments.

7 subjects participated in this pilot human study on
providing asymmetric demonstrations. Each participant was
prompted to play two full games (excluding a short practice
round). One game tested BIBR demonstrations and the
other tested joint demonstrations. The ordering by which
the games were played was randomly selected for each
participant. For each game, there are 6 rounds, each of which
prompts the participant to provide 5 demonstrations. A single
demonstration consists of all the state-action pairs along the
trajectory until the goal is reached. The five demonstration
trajectories are used to train a Random Forest Classifier,
composed of 10 trees and splitting nodes on the state (x∈R2),
for a single agent per round. This classifier takes in the current
state of the system and outputs the corresponding action for
the agent. The classifier is then used to produce a rollout
automatic trajectory. Note that, by the nature of the BIBR
method, within the 6 rounds, each agent is only trained 3
times, whereas for the joint method, each agent is trained



Trials Successes Success Rate Time Steps Turns Bumps
Method % Mean Mean Mean Mean

Demonstrations Joint 7×6×5 Not applicable Not applicable 238.40±5.42 52.67±4.27 23.73±2.26
BIBR 7×6×5 178.83±1.87 6.86±0.95 1.06±0.45

Learned Joint 7×6 42.86±14.97 0.44±0.15 215.08±7.34 31.67±6.12 7.26±0.81
BIBR 7×6 66.67±14.26 0.80±0.09 180.55±2.82 7.38±1.03 1.33±0.46

TABLE I: We constructed an asymmetric GridWorld, depicted in Figure 2, and performed a pilot study comparing BIBR and joint
demonstrations for 7 participants. Each subject played two full games, which consist of 6 rounds × 5 demonstrations each. One game
asked the participant to provide joint demonstrations while the other asked for BIBR demonstrations. We report both the evaluation metrics
for the demonstrations as well as the rollout trajectories induced by the learned policies. There are a total of 7×6×5 demonstrations
provided and 7×6 learned trajectories. From the learned trajectories, we determine success as the percentage of automated trajectories
where both agents arrive at the goal. We define success rate to be 0, 0.5, or 1 if no agents, one agent, or both agents navigate to their
goals, respectively. We report the average time steps, turns, and bumps (when the agents hit the wall) for both the demonstrations and the
learned trajectories.

6 times in the total span of the game. By construction, this
task does not require coordination, so it does not require a
joint policy to command both agents.

We compare collecting demonstrations on each single agent
(BIBR) and collecting them jointly. Table I presents the
evaluation metrics of both the demonstrations and the learned
policies from these demonstrations. There were not enough
participants for this pilot study to make significant claims,
but aggregated across all their rounds of demonstrations,
the experiment illustrates the difficulty of demonstrating
trajectories for the two agents simultaneously in asymmet-
ric tasks. As shown in Table I, the provided two-handed
demonstration trajectories are longer, less smooth (i.e. more
turns), and bump into the walls more, on average, than the
provided single-handed demonstrations using BIBR. These
comparisons hold true when evaluating the rollout trajectories
with the same metrics. We include two additional metrics for
the rollout trajectories. The percentage of success is simply
the percentage of rounds aggregated across the participants
that were able to automatically navigate successfully to the
goal. We define success rate to be 0, 0.5, or 1 if no agents, one
agent, or both agents succeed in arriving at their respective
goals. From a sample size of 42 rounds per each method, we
see that for BIBR, the expected success rate is, on average,
greater than 0.5, i.e. more than one agent makes it to the
goal on average, as compared to 0.44 for the joint method.

Analysis of the provided joint demonstrations shows that
they have a greater number of disallowed actions (bumps
against the walls) and turns, and take a greater number
of time steps to complete. This can lead to inconsistent
data for learning and potentially less successful policies. On
the other hand, by demonstrating a single agent at a time,
BIBR has a more consistent training dataset. This difference
in inconsistency is addressed in a following section and
illustrated in Figure 7.

C. Experiment 2: Factorial Study

In the next experiment, we consider a factorial study of the
following conditions: symmetric task with joint, asymmetric
task with joint, symmetric task with BIBR, and asymmetric
task with BIBR. For each participant, we assign a random
ordering of a symmetric and asymmetric task, illustrated in
Figure 1. We randomly assign each participant (with equal
probability) either to play the game with BIBR or joint

demonstrations. In addition to the symmetric and asymmetric
game, we include a practice round of the symmetric map
at the very beginning to familiarize the participant with the
system and interface. We omit data from the practice round
in our analysis.

The participant demonstrates a trajectory by guiding one
of the agents (if BIBR) or both of the agents (if playing two-
handed) to the respective goals, as in Experiment 1, and five
demonstrations are required of each round. After each round,
there is a rollout, where the joint policies are rolled out and
evaluated by whether or not the automated agents arrive at
the goal, and how smooth and long the induced trajectory is.
Differing from Experiment 1, if after the rollout both agents
make it to their respective goals, then we assume that a local
optimum has been reached and the game is complete, and the
participant is prompted with the next game. If not, then the
game proceeds to another round. The participant will then
need to provide five more demonstrations for this round. If
the participant is assigned to provide demonstrations in the
manner of BIBR, then the participant switches to navigate
the other agent for the new round while the agent in the
prior round moves autonomously using its corresponding
Random Forest Classifier. Otherwise, the participant is asked
to demonstrate on both agents again for the new round. We
set the maximum number of rounds to 5 to ensure that the
experiment has a finite horizon, at which case the subject is
prompted with the next game.

1) Successful Policies: Of the 51 subjects that completed
the game, 27 were randomly assigned to use BIBR, and
24 were assigned to the joint demonstrations. After the first
round of data, the learned policy with BIBR is more likely
to complete the task successfully (Figure 3). Note that we
consider the first round for BIBR to really be the second round,
when both arms have been provided five demonstrations.
While the joint method has a 29.17% probability of success
by the end of the first round, the BIBR method has higher
probability of success of 55.55%. Eventually, as more data is
collected, this advantage narrows. By the end of the 5th round,
77.78% of the subjects assigned BIBR were able to complete
the symmetric game, compared to 81.48% who were able to
complete the asymmetric game. Probability of success for the
joint demonstration subjects was higher, with 91.67% of the
subjects completing the symmetric game by the end of the
5th round and 87.5% completing the asymmetric game. We
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Fig. 3: Ratio of subjects who completed the game in the first
round and cumulatively within the allotted five rounds out of the
total number of subjects in each category (i.e. joint vs. BIBR)
that completed the entire experiment. We define completion as
success of the learned policy to navigate both agents to their
respective goals. The total number of subjects to successfully finish
both the symmetric and asymmetric tasks is 24 under the joint
demonstrations and 27 under BIBR. In Figure 3a, a symmetric map
was used to evaluate the joint method versus BIBR. 22 subjects are
represented under both the joint and BIBR methods. In Figure 3b,
an asymmetric map was used to evaluate joint versus BIBR. 21
subjects in each category represent the complete set of people to
complete the asymmetric task successfully. For the asymmetric task,
55.55% of the participants who used BIBR were successful after
the first round (where we take the first round to be when both arms
have been demonstrated on five times), while 29.17% of the joint
demonstrations subjects completed the task after one round. By the
end of the fifth round, 87.5% of the joint demonstrations subjects
completed the asymmetric game versus 77.5% of BIBR subjects.
However, it can be noted that by the fifth round, one agent was
trained 3 times and another was trained 2 times for BIBR as opposed
to the joint method, where both agents were trained 5 times each.

do notice that joint has a lower ultimate failure rate (never
completing the game by the fifth round) of 16.67% instead
of 22.22% for BIBR.

2) Length and Smoothness of the Trajectories: Next,
we look at the length and smoothness of the trajectories
collected using the BIBR and joint training procedures. The
objective is to understand why BIBR improves early training
performance. Our hypothesis is that BIBR collects more
consistent demonstrations.

We omit data in each condition from the subjects of the
pool of 51 participants who never successfully trained the
agents for the given task within the alloted five rounds,
and we only consider the success pool (22 and 21 subjects
complete the symmetric and asymmetric games, respectively,
for both BIBR and joint demonstrations). Figure 4 and
Figure 5 illustrate the average number of steps and turns
of the final successful learned trajectories, respectively, for
each of the categories within the success pool. As shown in
Figure 4, there is no significant difference in the length of
the learned trajectory within the symmetric games between
demonstrations provided jointly versus via BIBR, but there is
a small significant difference within the asymmetric games,
with joint demonstrations averaging at 278± 12.22 steps

compared to 254±10.52 steps for the BIBR demonstrations.
The same observations hold for the number of “turns” in
the learned trajectory — there is no significant difference
in performance for the symmetric game, but within the
asymmetric games, BIBR collects significantly smoother
trajectories at 17.10±4.51 turns compared to 30.62±5.10
under the joint demonstrations. Results thus suggest that, in
the context of the GridWorld game and the constraint that
the participants successfully complete the game, the average
trajectory induced by the rollout policy is smoother and
shorter under demonstrations collected using BIBR than the
average trajectory induced by demonstrations collected jointly
for asymmetric tasks. However, when the task is symmetric,
there is no observable difference in the performance of the
learned policy, which supports the experimental results of
[5] and [8]. These results, along with the consideration that
BIBR inherently requires twice the amount of time to provide
the same number of total demonstrations between two agents,
presents a tradeoff between the two evaluated methods.

3) User Survey of Difficulty of Demonstrations: To evaluate
these methods from a human supervisor’s perspective, we
asked all participants who completed the entire experiment
to rate each task in an exit survey. For the asymmetric
and symmetric tasks, participants were allowed to choose a
discrete rating from 1 to 5, with 5 being the most difficult.
As shown in Figure 6, the subjects of the experiment found
that the BIBR approach was significantly easier than the
joint approach for the asymmetric task. The joint asymmetric
games were rated 3.42±0.52 while the BIBR asymmetric
games were rated 2.11±0.43. While there is not a significant
difference between the joint and BIBR methods for the
symmetric task, Figure 6 illustrates that, under the constraints
of this task, BIBR is not perceived to be more difficult than
the joint method. When asked in the exit survey for an
explanation of their rating, some subjects remarked that the
two-handed task was much more exhausting, which again
underlines the ability of BIBR to address the core motivations
of this paper.

4) Coverage of Demonstrations: Finally, we wish to
understand why, despite being less smooth than BIBR
demonstrations, joint demonstrations could train a successful
policy, sometimes with greater success than BIBR (see
Figure 3). Our hypothesis was that the joint demonstrations
were naturally noisier, as they were more difficult to provide
than the single-handed demonstrations. By the nature of
the experiment, since the joint demonstration trajectories
were longer and covered a greater portion of the state space
of the system, the Random Forest Classifier was provided
more data from the joint method over BIBR. In comparison,
BIBR encourages precise demonstrations by eliminating
the challenging cognitive load of a bilateral task, thereby
effectively providing the Random Forest Classifier with a
reduced training set. We illustrate the difference in coverage
for the factorial experiment in Figure 7. As predicted, BIBR
demonstrations cover a smaller portion of the state space (e.g.
52.27% versus 58.70% for joint method in the asymmetric
task). We plan to address this artifact in future work.
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Fig. 4: Average trajectory length among subjects who completed
the game within the five allotted rounds. For both BIBR and joint,
21 and 22 participants, respectively, completed the asymmetric and
symmetric game. The average number of steps per agent for the
final successful rollout trajectory is summarized here, along with
1.96× standard error of the mean. There is a small but statistically
significant difference in the number of steps taken between the
joint (278.08±12.22) and BIBR (254.00±10.52) methods for the
asymmetric game but a minimal difference for the symmetric game.
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Fig. 5: Average trajectory smoothness among subjects who com-
pleted the game within the five allotted rounds. The average number
of turns per agent for the final successful rollout trajectory is
summarized here as a measure of smoothness of the induced
trajectory. There is a statistically significant difference in the number
of turns taken between the joint (30.62±5.1) and BIBR (17.1±4.5)
methods for the asymmetric game, but there is again no significant
difference for the symmetric game.
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Fig. 6: We asked all 51 participants to rate the difficulty of the
symmetric and asymmetric games from 1 to 5, with 5 being the most
difficult. We summarize the average results from this survey here
and present the 95% confidence interval about the mean. Mirroring
Figure 4 and Figure 5, we see no significant difference between
BIBR and joint demonstrations under the symmetric task. However,
the subjects rated joint demonstrations as significantly more difficult
than those who used BIBR for the asymmetric task. Subjects under
the condition of joint demonstrations rated, on average, that the
asymmetric task was a difficulty of 3.42±0.52 on a scale of 1 to
5, which is significantly higher than the difficulty of 2.11± 0.43
reported for the BIBR demonstrations.
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Fig. 7: We visualize the aggregated coverage of all demonstrations
provided by users for each factorial of the experiment. This
visualization shows a slightly sparser coverage of the state space
from the BIBR demonstrations than the joint demonstrations. For
the symmetric task, the joint demonstrations cover 48.72% of the
allowable state space, as compared to 44.93% by BIBR. For the
asymmetric task, the joint and BIBR demonstrations cover 58.70%
and 52.27% of the allowable state space, respectively. We highlight
a region in orange for visual comparison.

VI. FUTURE WORK AND DISCUSSION

This paper presents an initial exploration of learning
coordinated bilateral policies from unilateral demonstrations
by rolling out an estimated policy for one manipulator while
the human demonstrates for the other. Bilateral Iterated Best
Response (BIBR) in an initial user study of 51 participants
suggests: (1) a confirmation of prior work that bilateral (both
manipulators at once) demonstrations are noisier and longer
than demonstrations for either single manipulator when the
task is asymmetric, (2) in such settings, BIBR can learn viable
policies with significantly fewer demonstrations than jointly
providing demonstrations for both arms. These results are
promising as they suggest a number of important directions
for future work:

Cost-sensitivity: One limitation of our current study is that
we do not consider rewards when learning policies through
imitation. This leads to potentially confounding demonstra-
tions that are of poor quality, skewing the learned results.
We believe that this can be addressed with techniques similar
to off-policy Reinforcement Learning by approximating a
Q-function instead of trying to learn the policy. This would
use the cost-to-go (i.e., the Q function) to weight predictions
so that mispredicting strategic state-action pairs is penalized
more.

Aggregating Rounds: Another consideration is aggregating
data from multiple rounds of demonstrations. Prior work
suggests that this problem is subtle and a number of
challenging issues can arise [9, 18]. Importance sampling can
be used to aggregate data collected under different policies.

Physical User Studies: We will also use BIBR in physical
studies in robotic manipulation tasks. We are particularly inter-
ested in learning from demonstrations policies for deformable
manipulation, such as cutting thin tissue, knot tying, and
buttoning/unbuttoning. These user studies will also illustrate
additional challenges in kinematics and configuration in



addition to multilateral coordination, e.g., when a human
is controlling two manipulators with different kinematic
properties. A current challenge with rolling out polices on
physical robots is ensuring movement of realistic smoothness
and speed. This is necessary in order to obtain an accurate
best response from the supervisor at each iteration.

Three or more arms: We will also consider generalizations
to more than two arms. For example, the Intuitive Surgical
da Vinci has four arms in the clinical version, but a human
teleoperator can only control two at one time. We hope to
show that in such setups an algorithm like BIBR can be used
to facilitate coordinated multilateral operation.
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